Skip to main content
Log in

Traveling Waves in Discrete Periodic Media for Bistable Dynamics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper is concerned with the existence, uniqueness, and global stability of traveling waves in discrete periodic media for a system of ordinary differential equations exhibiting bistable dynamics. The main tools used to prove the uniqueness and asymptotic stability of traveling waves are the comparison principle, spectrum analysis, and constructions of super/subsolutions. To prove the existence of traveling waves, the system is converted to an integral equation which is common in the study of monostable dynamics but quite rare in the study of bistable dynamics. The main purpose of this paper is to introduce a general framework for the study of traveling waves in discrete periodic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos N., Bates P.W., Chen X. (1999) Periodic traveling waves and locating oscillating patterns in multidimensional domains. Trans. Am. Math. Soc. 351:2777–2805

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion and nerve propagation. Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, Vol. 446, pp. 5–49. Springer, New York, 1975

  3. Aronson D.G., Weinberger H.F. (1978) Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30: 33–76

    Article  MathSciNet  MATH  Google Scholar 

  4. Bates P.W., Chen X. Chmaj A. (2003) Traveling waves of bistable dynamics on a lattice. SIAM J. Math. Anal. 35:520–546

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestycki H., Hamel F. (2002) Front propagation in periodic excitable media. Comm. Pure Appl. Math. 55: 949–1032

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I-Periodic framework. J. Eur. Math. Soc.(2007, to appear)

  7. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: I-Influence of periodic heterogeneous environment on species persistence (2007, preprint)

  8. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts (2007, preprint)

  9. Bramson, M.: Convergence of solutions of the Kolmogorov equation to traveling waves. Mem. Am. Math. Soc. 44 (1983)

  10. Chen X. (1997) Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2: 125–160

    MATH  Google Scholar 

  11. Chen X., Fu S.-C., Guo J.-S. (2006) Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J. Math. Anal. 38: 233–258

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen X., Guo J.-S. (2002) Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations. J. Differ. Equ. 184: 549–569

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen X., Guo J.-S. (2003) Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326: 123–146

    Article  MathSciNet  MATH  Google Scholar 

  14. Chow S.-N., Mallet-Paret J., Shen W. (1995) Stability and bifurcation of traveling wave solution in coupled map lattices. Dyn. Syst. Appl. 4: 1–26

    MATH  Google Scholar 

  15. Chow S.N., Mallet-Paret J., Shen W. (1998) Travelling waves in lattice dynamical systems. J. Differ. Equ. 149: 249–291

    Article  MathSciNet  Google Scholar 

  16. Ermentrout B., McLeod J.B. (1993) Existence and uniqueness of traveling waves for a neural network. Proc. R. Soc. Edinburgh 123A: 461–478

    MathSciNet  Google Scholar 

  17. Fife, P.C.: Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, Vol. 28. Springer, Heidelberg, 1979

  18. Fife P.C., McLeod J.B. (1977) The approach of solutions of non-linear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65: 335–361

    Article  MathSciNet  MATH  Google Scholar 

  19. Fife P.C., McLeod J.B. (1981) A phase plane discussion of convergence to traveling fronts for nonlinear diffusion. Arch. Ration. Mech. Anal. 75: 281–314

    Article  MathSciNet  MATH  Google Scholar 

  20. Fisher R.A. (1937) The advance of advantageous genes. Ann. Eugenics 7: 335–369

    Google Scholar 

  21. Freidlin M.I. (1985) Limit theorems for large deviations and reaction–diffusion equations. Ann. Probab. 13: 639–675

    Article  MathSciNet  MATH  Google Scholar 

  22. Gärtner J., Freidlin M.I. (1979) On the propagation of concentration waves in periodic and random media. Soviet Math. Dokl. 20: 1282–1286

    MATH  Google Scholar 

  23. Guo J.-S., Hamel F. (2006) Front propagation for discrete periodic monostable equations. Math. Ann. 355: 489–525

    Article  MathSciNet  Google Scholar 

  24. Hudson W., Zinner B. (1994) Existence of traveling waves for a generalized discrete Fisher’s equation. Commun. Appl. Nonlin. Anal. 1: 23–46

    MathSciNet  MATH  Google Scholar 

  25. Hudson, W., Zinner, B.: Existence of Travelling Waves for Reaction-Dissusion Equations of Fisher Type in Periodic Media. Boundary Value Problems for Functional-Differential Equations (Ed. Henderson J.) World Scientific, pp. 187–199, 1995

  26. Kametaka Y. (1976) On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type. Osaka J. Math. 13:11–66

    MathSciNet  MATH  Google Scholar 

  27. Kanel Ya.I. (1962) On the stabilization of Cauchy problem for equations arising in the theory of combustion. Mat. Sbornik 59: 245–288

    MathSciNet  Google Scholar 

  28. Kanel Ya.I. (1964) On the stabilization of solutions of the equations of the theory of combustion with initial data of compact support. Mat. Sbornik 65: 398–413

    MathSciNet  Google Scholar 

  29. Kolmogorov A.N., Petrovsky I.G., Piskunov N.S. (1937) Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un probléme biologique. Bull. Université d’État à Moscou, Ser. Int., Sect. A. 1: 1–25

    Google Scholar 

  30. Krein, M.G., Rutman, M.A.: Linear operators meaving invariant a cone in a Banach space, Uspehi Mat. Nauk (N.S.) 3, 1(23), 3–95 (1948); also Russian Math. Surveys 26, 199–325 (1950)

  31. Lewis B., von Elbe G. (1961) Combustion, flames and explosions of gases. Academic, Orlando

    Google Scholar 

  32. Mallet-Paret J. (1999) The Fredholm alternative for functional-differential equations of mixed type. J. Dyn. Differ. Equ. 11: 1–47

    Article  MathSciNet  MATH  Google Scholar 

  33. Mallet-Paret J. (1999) The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11: 49–127

    Article  MathSciNet  MATH  Google Scholar 

  34. Matano, H.: Travelling waves in spatially inhomogeneous diffusive media—the non-periodic case (2007, preprint)

  35. Moet H.J.K. (1979) A note on the asymptotic behavior of solutions of the KPP equation. SIAM J. Math. Anal. 10: 728–732

    Article  MathSciNet  MATH  Google Scholar 

  36. Nakamura, K.-I.: Effective speed of traveling wavefronts in periodic inhomogeneous media, Proceedings Workshop “Nonlinear Partial Differential Equations and Related Topics”, Joint Research Center for Science and Technology of Ryukoku University, pp. 53–60, 1999

  37. Sattinger D.H. (1976) On the stability of waves of nonlinear parabolic systems. Adv. Math. 22: 312–355

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen W. (1999) Travelling waves in time almost periodic structures governed by bistable nonlinearities: I. Stability and uniqueness. J. Differ. Equ. 159: 1–54

    Article  MATH  Google Scholar 

  39. Shen W. (1999) Travelling waves in time almost periodic structures governed by bistable nonlinearities: II. Existence. J. Differ. Equ. 159: 55–101

    Article  MATH  Google Scholar 

  40. Shigesada N., Kawasaki K. (1997) Biological invasions: theory and practice. Oxford Series in Ecology and Evolution Oxford University Press, Oxford

    Google Scholar 

  41. Shigesada N., Kawasaki K., Teramoto E. (1986) Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30: 143–160

    Article  MathSciNet  MATH  Google Scholar 

  42. Shorrocks B., Swingland I.R. (1990) Living in a Patch Environment. Oxford University Press, New York

    Google Scholar 

  43. Uchiyama K. (1978) The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ. 18: 453–508

    MathSciNet  MATH  Google Scholar 

  44. Weinberger H.F. (1982) Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13: 353–396

    Article  MathSciNet  MATH  Google Scholar 

  45. Weinberger H.F. (2002) On spreading speeds and traveling waves for growth and migration in periodic habitat. J. Math. Biol. 45: 511–548

    Article  MathSciNet  MATH  Google Scholar 

  46. Williams F. (1983) Combustion Theory. Addison-Wesley, Reading

    Google Scholar 

  47. Wu J., Zou X. (1997) Asymptotic and periodic boundary values problems of mixed PDEs and wave solutions of lattice differential equations. J. Differ. Equ. 135: 315–357

    Article  MathSciNet  MATH  Google Scholar 

  48. Xin X. (1991) Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity. J. Dyn. Differ. Equ. 3: 541–573

    Article  MathSciNet  MATH  Google Scholar 

  49. Xin X. (1992) Existence of planar flame fronts in convective-diffusive periodic media. Arch. Ration. Mech. Anal. 121: 205–233

    Article  MathSciNet  MATH  Google Scholar 

  50. Xin X. (1993) Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media. J. Stat. Phys. 73: 893–925

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Xin J.X. (1994) Existence of multidimensional traveling waves in tranport of reactive solutes through periodic porous media. Arch. Ration. Mech. Anal. 128: 75–103

    Article  MathSciNet  MATH  Google Scholar 

  52. Xin J. (2000) Front propagation in heterogeneous media. SIAM Rev. 42: 161–230

    Article  MathSciNet  Google Scholar 

  53. Zinner B. (1991) Stability of traveling wavefronts for the discrete Nagumo equations. SIAM J. Math. Anal. 22: 1016–1020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Zinner B. (1992) Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equ. 96:1–27

    Article  MathSciNet  MATH  Google Scholar 

  55. Zinner B., Harris G., Hudson W. (1993) Traveling wavefronts for the discrete Fisher’s equation. J. Differ. Equ. 105: 46–62

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Shenq Guo.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Guo, JS. & Wu, CC. Traveling Waves in Discrete Periodic Media for Bistable Dynamics. Arch Rational Mech Anal 189, 189–236 (2008). https://doi.org/10.1007/s00205-007-0103-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0103-3

Keywords

Navigation