Skip to main content
Log in

Rotating Navier-Stokes Equations in \({\mathbb R}^{3}_{+}\) with Initial Data Nondecreasing at Infinity: The Ekman Boundary Layer Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove time local existence and uniqueness of solutions to a boundary layer problem in a rotating frame around the stationary solution called the Ekman spiral. We choose initial data in the vector-valued homogeneous Besov space \(\dot{{\mathcal B}}_{\infty,1,\sigma}^0 ({\mathbb R}^2; L^p({\mathbb R}_+))\) for 2 <  p <  ∞. Here the L p-integrability is imposed in the normal direction, while we may have no decay in tangential components, since the Besov space \(\dot{{\mathcal B}}_{\infty,1}^0\) contains nondecaying functions such as almost periodic functions. A crucial ingredient is theory for vector-valued homogeneous Besov spaces. For instance we provide and apply an operator-valued bounded H -calculus for the Laplacian in \(\dot{{\mathcal B}}_{\infty,1}^0({\mathbb R}^n; {\mathsf{E}})\) for a general Banach space \({\mathsf{E}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Amann H. (1997). Operator-Valued Fourier Multipliers, Vector-Valued Besov Spaces and Applications. Math. Nachr. 186: 5–56

    Article  MATH  MathSciNet  Google Scholar 

  2. Amann, H.: Vector-Valued Distributions and Fourier Multipliers. http://www.math.unizh.ch/amann/books.html, 2003

  3. Bergh, J., Löfström J.: Interpolation Spaces. An Introduction. Springer-Verlag, 1976

  4. Cowling M., Doust I., McIntosh A. and Yagi A. (1996). Banach space operators with a bounded H functional calculus. J. Aust. Math. Soc. 60: 51–89

    Article  MATH  MathSciNet  Google Scholar 

  5. Cullen, M.J.P.: New mathematical developments in atmosphere and ocean dynamics, and their application to computer simulation. Large-Scale Atmosphere-Ocean Dynamics. Analytical Methods and Numerical Models, Volume I. (Ed.) Norbury John, Roulstone Ian, Cambridge University Press, 2002

  6. Denk R., Hieber M. and Prüss J. (2003). R-Boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 166: viii–114

    Google Scholar 

  7. Desch W., Hieber M. and Prüss J. (2001). L p-Theory of the Stokes equation in a half-space. J. Evol. Equ. 1: 115–142

    Article  MATH  MathSciNet  Google Scholar 

  8. Fujiwara D. and Morimoto H. (1977). An L r theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo 24: 685–700

    MATH  MathSciNet  Google Scholar 

  9. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations Volume I, Linearized Steady Problems. Springer-Verlag, 1994

  10. Giga Y., Inui K., Mahalov A. and Matsui S. (2006). Navier-Stokes Equations in a Rotating Frame in \({\mathbb R}^3\) with Initial Data Nondecreasing at Infinity. Hokkaido Math. J. 35: 321–364

    MATH  MathSciNet  Google Scholar 

  11. Greenspan, H.P.: The Theory of Rotating Fluids. Cambridge University Press, 1968

  12. Grisvard P. (1966). Commutativité de deux foncteurs d’interpolation et applications. J. Math. Pures Appl. 45: 207–290

    MATH  MathSciNet  Google Scholar 

  13. Haller, R.: Poissonkern Abschätzungen und beschränkter H -Kalkül, PhD Thesis, TU Darmstadt, Wissenschaftlicher Verlag, Berlin (2003)

  14. Holton, J.R.: An Introduction to Dynamic Meteorology. Academic Press, 1992

  15. Kalton N. and Weis L. (2001). The H -calculus and sums of closed operators. Math. Ann. 321: 319–345

    Article  MATH  MathSciNet  Google Scholar 

  16. Kozono H. and Yamazaki M. (1994). Semilinear heat equations and Navier-Stokes equation with distributions in new function spaces as initial data. Comm. Partial Differential Equations 19: 959–1014

    Article  MATH  MathSciNet  Google Scholar 

  17. Majda, A.: Introduction to PDE’s and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, 2003

  18. Muramatu T. (1974). Besov spaces and Sobolev spaces of generalized functions defined on a general region. Publ. R.I.M.S. Kyoto Univ. 9: 325–396

    MathSciNet  Google Scholar 

  19. Pedlosky J. (1987). Geophysical Fluid Dynamics. 2nd edition. Springer-Verlag

  20. Saal, J.: Robin Boundary Conditions and Bounded H -Calculus for the Stokes Operator. PhD Thesis, TU Darmstadt, Logos Verlag, Berlin, 2003

  21. Saal J. (2006). Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space. J. Math. Fluid Mech. 8: 211–241

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Sawada O. (2004). The Navier-Stokes flow with linearly growing initial velocity in the whole space. Bol. Soc. Parana. Mat. 22(3): 75–96

    MATH  MathSciNet  Google Scholar 

  23. Sawada O. and Taniuchi Y. (2004). On the Boussinesq flow with nondecaying initial data. Funkcial. Ekvac. 47: 225–250

    Article  MATH  MathSciNet  Google Scholar 

  24. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, 1993

  25. Taniuchi, Y.: Remarks on global solvability of 2-D Boussinesq equations with non-decaying initial data, preprint.

  26. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics. 78, 1992

  27. Ukai S. (1987). A solution formula for the Stokes equation in R +3 . Comm. Pure Appl. Math. 40: 611–621

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Giga.

Additional information

Communicated by V. Sverak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giga, Y., Inui, K., Mahalov, A. et al. Rotating Navier-Stokes Equations in \({\mathbb R}^{3}_{+}\) with Initial Data Nondecreasing at Infinity: The Ekman Boundary Layer Problem. Arch Rational Mech Anal 186, 177–224 (2007). https://doi.org/10.1007/s00205-007-0053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0053-9

Keywords

Navigation