Skip to main content
Log in

Derivation of the Zakharov Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This article continues the study, initiated in [27, 7], of the validity of the Zakharov model which describes Langmuir turbulence. We give an existence theorem for a class of singular quasilinear equations. This theorem is valid for prepared initial data. We apply this result to the Euler–Maxwell equations which describes laser-plasma interactions, to obtain, in a high-frequency limit, an asymptotic estimate that describes solutions of the Euler–Maxwell equations in terms of WKB approximate solutions, the leading terms of which are solutions of the Zakharov equations. Due to the transparency properties of the Euler–Maxwell equations evidenced in [27], this study is carried out in a supercritical (highly nonlinear) regime. In such a regime, resonances between plasma waves, electromagnetric waves and acoustic waves could create instabilities in small time. The key of this work is the control of these resonances. The proof involves the techniques of geometric optics of JOLY, MÉTIVIER and RAUCH [12, 13]; recent results by LANNES on norms of pseudodifferential operators [14]; and a semiclassical paradifferential calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Added H., Added S. (1984) Existence globale de solutions fortes pour les équations de la turbulence de Langmuir en dimension 2. C. R. Math. Acad. Sci. 299, 551–554

    MathSciNet  MATH  Google Scholar 

  2. Bony J.M. (1981) Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires. Ann. Sci. École Norm. Sup. (4) 14, 209–246

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain J., Colliander J. (1996) On wellposedness of the Zakharov system. Int. Math. Res. Not 1, 515–546

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheverry C. (2004) Propagation of oscillations in real vanishing viscosity limit. Comm. Math. Phys. 247, 655–695

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Cheverry C., Guès O., Métivier G. (2003) Oscillations fortes sur un champ linéairement dégénéré. Ann. Sci. École Norm. Sup. (4) 36, 691–745

    Article  MathSciNet  MATH  Google Scholar 

  6. Colin M., Colin T. (2004) On a quasilinear Zakharov system describing laser-plasma interactions. Differential Integral Equations 17, 297–330

    MathSciNet  MATH  Google Scholar 

  7. Colin T., Ebrard G., Gallice G., Texier B. (2004) Justification of the Zakharov model from Klein-Gordon-waves systems. Comm. Partial Differential Equations 29:1365–1401

    Article  MathSciNet  MATH  Google Scholar 

  8. Colin, T., Métivier, G.: Instabilities in Zakharov equations for laser propagation in a plasma. Preprint

  9. Grenier E. (1997) Pseudo-differential estimates of singular perturbations. Comm. Pure Appl. Math. 50, 821–865

    Article  MathSciNet  MATH  Google Scholar 

  10. Delcroix, J.-L., Bers, A.: Physique des Plasmas. Vols. 1 and 2, InterEditions-Editions du CNRS, 1994

  11. Ginibre J., Tsutsumi Y., Velo G. (1997) On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151, 384–436

    Article  MathSciNet  MATH  Google Scholar 

  12. Joly J.-L., Métivier G., Rauch J. (1998) Diffractive nonlinear geometric optics with rectification. Indiana Univ. Math. J. 47:1167–1241

    Article  MathSciNet  MATH  Google Scholar 

  13. Joly J.-L., Métivier G., Rauch J. (2000) Transparent nonlinear geometric optics and -Bloch equations. J. Differential Equations 166, 175–250

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Lannes D. (2006) Sharp estimates for pseudo-differential operators with limited regularity and commutators. J. Funct. Anal. 232, 495–539

    Article  MathSciNet  MATH  Google Scholar 

  15. Linares F., Ponce G., Saut J.-C. (2005) On a degenerate Zakharov system. Bull. Braz. Math. Soc. 36, 1–23

    Article  MathSciNet  MATH  Google Scholar 

  16. Métivier, G., Zumbrun, K.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Amer. Math. Soc. 175, (2005)

  17. Musher S., Rubenchik A., Zakharov V. (1985) Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Rep. 129, 285–366

    Article  ADS  MathSciNet  Google Scholar 

  18. Ozawa T., Tsutsumi Y. (1992) Existence and smoothing effect of solution for the Zakharov equation. Publ. Res. Inst. Math. Sci. 28, 329–361

    Article  MathSciNet  MATH  Google Scholar 

  19. Serre, D.: Oscillations nonlinéaires de haute fréquence, dim = 1. Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. XII (Paris, 1991–1993), 190–210. Harlow, Longman Sci. Tech., 1994

  20. Sone, Y.: Kinetic Theory and Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology, Birhaüser, 2002

  21. Sulem C., Sulem P.-L. (1979) Quelques résultats de régularité pour les équations de la turbulence de Langmuir. C. R. Math. Acad. Sci. Paris. 289:A173–A176

    ADS  MATH  Google Scholar 

  22. Sulem, C., Sulem, P.-L.: The nonlinear Schrödinger equation: self-focusing and wave collapse. Applied Math. Sciences 139, Springer Verlag, 1999

  23. Schochet S., Weinstein M. (1986) The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Comm. Math. Phys. 106, 569–580

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Takata, S., Aoki, K.: The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: asymptotic analysis of the Boltzmann equation. The Sixteenth International Conference on Transport Theory, Atlanta, 1999, Transport Theory Statist. Phys. 30, 205–237 (2001)

  25. Taylor, M.: Pseudodifferential operators and nonlinear PDE. Progress in Mathematics Vol. 100, Birkhaüser Boston, 1991

  26. Texier B. (2004) The short wave limit for nonlinear, symmetric hyperbolic systems. Adv. Differential Equations 9, 1–52

    MathSciNet  MATH  Google Scholar 

  27. Texier B. (2005) WKB asymptotics for the Euler-Maxwell equations. Asymptot. Anal. 42, 211–250

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Texier.

Additional information

Communicated by A. Bressan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Texier, B. Derivation of the Zakharov Equations. Arch Rational Mech Anal 184, 121–183 (2007). https://doi.org/10.1007/s00205-006-0034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0034-4

Keywords

Navigation