Skip to main content

Advertisement

Log in

The Energy of Some Microscopic Stochastic Lattices

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We introduce a notion of energy for some microscopic stochastic lattices. Such lattices are broad generalizations of simple periodic lattices, for which the question of the definition of an energy was examined in a series of previous works [14–18]. Note that slightly more general deterministic geometries were also considered in [6]. These lattices are involved in the modelling of materials whose microscopic structure is a perturbation, in a sense made precise in the article, of the periodic structure of a perfect crystal. The modelling considered here is either a classical modelling, where the sites of the lattice are occupied by ball-like atomic systems that interact by pair potentials, or a quantum modelling where the sites are occupied by nuclei equipped with an electronic structure spread all over the ambient space. The corresponding energies for the infinite stochastic lattices are derived consistently with truncated systems of finite size, by application of a thermodynamic limit process. Subsequent works [7, 8] will be devoted to the macroscopic limits of the energies of such microscopic lattices, thereby extending to a stochastic context the results of [4, 5]. Such convergences in a stochastic setting (in dimension 1) have been studied in [21, 22]. We will also study in [8] some variants and extensions of the stationary setting presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alicandro R., Cicalese M. (2004) A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36, 1–37

    Article  MATH  MathSciNet  Google Scholar 

  2. Bénilan P., Brezis H., Crandall M. (1975) A semilinear equation in L 1 \((\mathbb{R}^{N})\). Ann. Sc. Norm. Super Pisa Cl. Sci.(5)2: 523–555

    Google Scholar 

  3. Blanc X., Le Bris C. (2002) Periodicity of the infinite-volume ground-state of a one-dimensional quantum model. Nonlinear Anal. 48, 791–803

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanc X., Le Bris C., Lions P.-L. (2001) Convergence de modèles moléculaires vers des modèles de mécanique des milieux continus. C. R. Math. Acad. Sci. Paris 332, 949–956

    MATH  MathSciNet  Google Scholar 

  5. Blanc X., Le Bris C., Lions P.-L. (2002) From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164, 341–381

    Article  MATH  MathSciNet  Google Scholar 

  6. Blanc X., Le Bris C., Lions P.-L. (2003) A definition of the ground state energy for systems composed of infinitely many particles. Comm. Partial Differential Equations 28, 439–475

    Article  MATH  MathSciNet  Google Scholar 

  7. Blanc, X., Le Bris, C., Lions, P.-L.: Discrete to continuum limit for some models of stochastic lattice atoms. To appear in C. R. Math. Acad. Sci. Paris

  8. Blanc, X., Le Bris, C., Lions, P.-L.: In preparation

  9. Braides A. (2000) Non-local variational limits of discrete systems. Commun. Contemp. Math. 2, 285–297

    MATH  MathSciNet  Google Scholar 

  10. Braides A., Dal Maso G., Garroni A. (1999) Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146, 23–58

    Article  MATH  MathSciNet  Google Scholar 

  11. Braides A., Gelli M.S. (2002) Limits of discrete systems with long-range interactions. J. Convex Anal. 9, 363–399

    MATH  MathSciNet  Google Scholar 

  12. Breiman L. (1992) Probability. Classics in Applied Mathematics. SIAM, Philadelphia

    MATH  Google Scholar 

  13. Brezis H. (1984) Semilinear equations in \(\mathbb{R}^{N}\) without condition at infinity. Appl. Math. Optim. 12, 271–282

    Article  MATH  MathSciNet  Google Scholar 

  14. Catto I., Le Bris C., Lions P.-L. (1996) Limite thermodynamique pour des modèles de type Thomas-Fermi. C. R. Math. Acad. Sci. Paris 322, 357–364

    MATH  MathSciNet  Google Scholar 

  15. Catto, I., Le Bris, C., Lions, P.-L.: Mathematical Theory of Thermodynamic Limits: Thomas–Fermi Type Models. Oxford University Press, 1998

  16. Catto I., Le Bris C., Lions P.-L. (1998) Sur la limite thermodynamique pour des modèles de type Hartree et Hartree-Fock. C. R. Math. Acad. Sci. Paris 327, 259–266

    MATH  MathSciNet  Google Scholar 

  17. Catto I., Le Bris C., Lions P.-L. (2001) On the thermodynamic limit for Hartree-Fock type models. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 687–760

    Article  MATH  MathSciNet  Google Scholar 

  18. Catto I., Le Bris C., Lions P.-L. (2002) On some periodic Hartree-type models for crystals. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 143–190

    Article  MATH  MathSciNet  Google Scholar 

  19. Delaunay B.N., Dolbilin N.P., Shtogrin M.I., Galiulin R.V. (1976) A local criterion for regularity of a system of points. Sov. Math. Dokl. 17, 319–322

    Google Scholar 

  20. Friesecke G., James R.D. (2000) A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods. J. Mech. Phys. Solids 48, 1519–1540

    Article  MATH  MathSciNet  Google Scholar 

  21. Iosifescu O., Licht C., Michaille G. (2001) Variational limit of a one-dimensional discrete and statistically homogeneous system of material points. C. R. Math. Acad. Sci. Paris 32, 575–580

    MathSciNet  Google Scholar 

  22. Iosifescu O., Licht C., Michaille G. (2001) Variational limit of a one-dimensional discrete and statistically homogeneous system of material points. Asymptot. Anal. 28, 309–329

    MATH  MathSciNet  Google Scholar 

  23. Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics. Vol. 6. de Gruyter, 1985

  24. Lieb E.H. (1981) Thomas-Fermi and related theories of atoms and molecules. Rev. Modern Phys. 53, 603–641

    Article  ADS  MathSciNet  Google Scholar 

  25. Lieb E.H., Simon B. (1977) The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116

    Article  MathSciNet  Google Scholar 

  26. Pagano S., Paroni R. (2003) A simple model for phase transitions: from the discrete to the continuum problem. Quart. Appl. Math. 61, 89–109

    MATH  MathSciNet  Google Scholar 

  27. Shiryaev A.N. (1984) Probability. Graduate Texts in Mathematics, vol. 95. Springer, Berlin

    Google Scholar 

  28. Solovej J.P. (1990) Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules. Comm. Math. Phys. 129, 561–598

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Theil, F.: A proof of crystallization in two dimensions. To appear in Comm. Math. Phys. (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Blanc.

Additional information

Communicated by the Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanc, X., Bris, C.L. & Lions, PL. The Energy of Some Microscopic Stochastic Lattices. Arch Rational Mech Anal 184, 303–339 (2007). https://doi.org/10.1007/s00205-006-0028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0028-2

Keywords

Navigation