Skip to main content
Log in

The Semiclassical Regime for Ablation Front Models

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

In this paper, we study two problems appearing in two-dimensional fluid mechanics in a constant gravity field \({g}=-g{e}_{\tilde x}\). These two problems—the Rayleigh convection problem and the ablation front problem—generalize the Rayleigh–Taylor model in compressible flows. The analysis of their stability relies on semiclassical techniques for the linearized system around a reference solution. We consider normal modes which are approximate solutions corresponding to large wave numbers associated with \(\tilde{y}\), and we discuss the existence or the non-existence of such normal modes. The results depend on the value of the dimensionless growth rate Γ compared with two relevant mathematical parameters, namely σ p (p standing for the model) and some effective semiclassical parameter h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budko A.B., Liberman M.A. (1992). Stabilization of the Rayleigh-Taylor instability by convection in smooth density gradient: W.K.B. analysis. Phys. Fluids A 4:3499–3506

    Article  ADS  Google Scholar 

  2. Cherfils C., Lafitte O. (2000). Analytic solutions of the Rayleigh equation for linear density profiles. Phys. Rev. E 62:2967–2970

    Article  ADS  Google Scholar 

  3. Cherfils-Clerouin, C., Lafitte, O., Raviart, P.-A.: Asymptotics results for the linear stage of the Rayleigh-Taylor instability. Advances in Mathematical Fluid Mechanics, Birkhäuser, 2001

  4. Davies E.B. (1999). Semiclassical states for non-self-adjoint Schrödinger operators. Comm. Math. Phys. 200:35–41

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Davies E.B. (2000). Pseudo-spectra of differential operators. J. Operator Theory 43:243– 262

    MathSciNet  MATH  Google Scholar 

  6. Davies E.B. (2002). Non selfadjoint differential operators. Bull. London Math. Soc. 34:513–532

    Article  MathSciNet  MATH  Google Scholar 

  7. Dencker N., Sjöstrand J., Zworski M. (2004). Pseudo-spectra of semi-classical (Pseudo) differential operators. Comm. Pure. Appl. Math. 57:384–415

    Article  MathSciNet  MATH  Google Scholar 

  8. Goncharov, N.V.: Selfconsistent stability analysis of ablation fronts in inertial confinement fusion. Doctoral thesis, Rochester University (1998)

  9. Guo Y., Hwang H.J. (2003). On the dynamical Rayleigh-Taylor instability. Arch. Ration. Mech. Anal. 167:235–253

    Article  MathSciNet  MATH  Google Scholar 

  10. Hager, M.: Instabilité spectrale semi-classique pour des opérateurs non-autoadjoints I: un modèle. Preprint, 2004

  11. Helffer, B.: Analyse semi-classique et instabilité en hydrodynamique. Talk at “Journées de GrandMaison” Nov. 2003. http://www.math.u-psud.fr/∼ helffer.

  12. Helffer B., Lafitte O. (2003). Asymptotic growth rate for the linearized Rayleigh equation for the Rayleigh-Taylor instability. Asymptot. Anal. 33:189–235

    MathSciNet  MATH  Google Scholar 

  13. HÉrau F., Sjöstrand J., Stolk C. (2005). Semiclassical analysis for the Kramers-Fokker-Planck equation. Comm. Partial Differential Equation 30:689–760

    MATH  Google Scholar 

  14. Hitrik M. (2004). Boundary spectral behavior for semi-classical operators in one dimension. Int. Math. Nes. Nat. 64:3417–3438

    Article  MathSciNet  Google Scholar 

  15. Hörmander, L.: The analysis of Pseudo-differential operators. Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Sudies in Mathematics Volume 275, Springer, Berlin, 1985

  16. Kelbert, M., Suzonov, I.: Pulses and Other Wave Processes in Fluids. Modern Approaches in Geophysics, Volume 13, Springer, Berlin, 1996

  17. Kull H.J. (1989). Incompressible description of Rayleigh-Taylor instabilities in laser-ablated plasmas. Phys. Fluids A 1:170–182

    ADS  Google Scholar 

  18. Kull H.J., Anisimov S.I. (1986). Ablative stabilization in the incompressible Rayleigh-Taylor instability. Phys. Fluids 29:2067–2075

    Article  ADS  MATH  Google Scholar 

  19. Lafitte O. Sur la phase linéaire de l’instabilité de Rayleigh-Taylor. Séminaire à l’Ecole Polytechnique, Exp. No. XXI, Sémin. Equ. Dériv. Partielles, Ecole Polytech., Palaiseau (2001).

  20. Lafitte, O.: Study of the linear ablation growth rate for the quasi isobaric model of Euler equations with thermal conductivity. Prépublication 2005-29 du LAGA, Université de Paris XIII, Institut Galilée

  21. Lions P.-L. (1996). Mathematical Topics in Fluid Mechanics. Volume 1 Incompressible Models. Oxford University Press, New York

    MATH  Google Scholar 

  22. Masse, L.: Etude linéaire de l’instabilité du front d’ablation en fusion par confinement inertiel. Thèse de doctorat de l’IRPHE, (2001)

  23. Robert D. (1987). Autour de l’Analyse Semi-Classique. Progress in Mathematics Volume 68, Birkhäuser, Berlin

    Google Scholar 

  24. Sibuya Y. Global theory of a second order linear ordinary differential equation with a polynomial coefficient. North Holland Mathematics Studies, Volume 18, Chapter 5, 1975

  25. Sjöstrand, J.: Pseudospectrum for differential operators. Séminaire à l’Ecole Polytechnique, Exp. No. XVI, Sémin. Equ. Dériv. Partielles, Ecole Polytech., Palaiseau (2003)

  26. Strutt J.W. (1883). (Lord Rayleigh). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc. 14:170–177

    Google Scholar 

  27. Taylor G. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 301:192–196

    Article  ADS  Google Scholar 

  28. Zworski M. (2001). A remark on a paper by E.B. Davies. Proc. Amer. Math. Soc. 129:2955–2957

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Lafitte.

Additional information

Communicated by Y. Brenier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helffer, B., Lafitte, O. The Semiclassical Regime for Ablation Front Models. Arch Rational Mech Anal 183, 371–409 (2007). https://doi.org/10.1007/s00205-006-0006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0006-8

Keywords

Navigation