Skip to main content
Log in

Some Flows in Shape Optimization

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Geometric flows related to shape optimization problems of the Bernoulli type are investigated. The evolution law is the sum of a curvature term and a nonlocal term of Hele–Shaw type. We introduce generalized set solutions, the definition of which is widely inspired by viscosity solutions. The main result is an inclusion preservation principle for generalized solutions. As a consequence, we obtain existence, uniqueness and stability of solutions. Asymptotic behavior for the flow is discussed:we prove that the solutions converge to a generalized Bernoulli exterior free-boundary problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G., Jouve F.(2004). Toader A-M.:Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Andrews B., Feldman M. (2002). Nonlocal geometric expansion of convex planar curves. J. Differential Equations 182, 298–343

    Article  MATH  MathSciNet  Google Scholar 

  3. Barles G., Soner H.M., Souganidis P.E.(1993). Front propagation and phase field theory. SIAM J. Control Optim. 31, 439–469

    Article  MATH  MathSciNet  Google Scholar 

  4. Barles G., Souganidis P.E.(1998). A new approach to front propagation problems: theory and applications. Arch. Ration. Mech. Anal. 141, 237–296

    Article  MATH  MathSciNet  Google Scholar 

  5. Beurling A.(1958). On free-boundary problems for the Laplace equations. Sem. Analytic Functions 1, 248–263

    MATH  Google Scholar 

  6. Cannarsa P., Sinestrari C.(2004). Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Birkhäuser, Boston

    MATH  Google Scholar 

  7. Cardaliaguet P., Rouy E.(2004). Viscosity solutions of Hele-Shaw moving boundary problem for power-law fluid. Preprint

  8. Cardaliaguet P.(2000). On front propagation problems with nonlocal terms. Adv. Differential Equations 5,213–268

    MATH  MathSciNet  Google Scholar 

  9. Cardaliaguet P.(2001). Front propagation problems with nonlocal terms. II. J. Math. Anal. Appl. 260, 572–601

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen Y.G., Giga Y., Goto S.(1991). Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33, 749–786

    MATH  MathSciNet  Google Scholar 

  11. Crandall M.G., Ishii H., Lions P.-L.(1992). User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27, 1–67

    Article  MATH  MathSciNet  Google Scholar 

  12. Da Lio F., Kim C.I., Slepčev D.(2004). Nonlocal front propagation problems in bounded domains with Neumann-type boundary conditions and applications. Asymptot. Anal. 37, 257–292

    MATH  MathSciNet  Google Scholar 

  13. Evans L.C., Spruck J.(1991). Motion of level sets by mean curvature. I. J. Differential Geom. 33, 635–681

    MATH  MathSciNet  Google Scholar 

  14. Fleming W.H., Soner H.M.(1993). Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York

    MATH  Google Scholar 

  15. Flucher M., Rumpf M. (1997). Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486, 165–204

    MATH  MathSciNet  Google Scholar 

  16. Giga Y.(2006). Surface Evolution Equations A Level Set Approach Monographs in Mathematics Volume 99. Birkhäuser, New York

    Google Scholar 

  17. Gilbarg D., Trudinger N.S.(1983). Elliptic Partial Differential Equations of Second Order (2nd ed). Springer-Verlag, Berlin

    MATH  Google Scholar 

  18. Ilmanen T.: The level-set flow on a manifold. Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math. 54, 193–204. Amer. Math. Soc., Providence, RI, 1993

  19. Jensen R.(1988). The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Ration. Mech. Anal. 101, 1–27

    Article  MATH  Google Scholar 

  20. Kim C.I.(2003): Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Arch. Ration. Mech. Anal. 168, 299–328

    Article  MATH  MathSciNet  Google Scholar 

  21. Kim C.I.: A free boundary problem with curvature. Preprint 2004

  22. Osher S., Sethian J.(1988). Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys 79, 12–49

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Osher S., Santosa F.(2001). Level set methods for optimization problems involving geometry and constraints. I: Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171, 272–288

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Sethian J.A.: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 1999

  25. Sethian J.A., Wiegmann A.(2000). Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Soner H.M.(1993). Motion of a set by the mean curvature of its boundary. J. Differential Equations 101, 313–372

    Article  MATH  MathSciNet  Google Scholar 

  27. Tepper D.E.(1975). On a free boundary problem, the starlike case. SIAM J. Math. Anal. 6, 503–505

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang M.Y., Wang X.X., Guo D.(2003). A level set method for structural topology optimization. Comput. Methods Appl. Mech. Engrg. 192, 227–246

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Ley.

Additional information

Communicated by P-L. Lions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardaliaguet, P., Ley, O. Some Flows in Shape Optimization. Arch Rational Mech Anal 183, 21–58 (2007). https://doi.org/10.1007/s00205-006-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0002-z

Keywords

Navigation