Skip to main content
Log in

Crystalline Mean Curvature Flow of Convex Sets

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove a local existence and uniqueness result of crystalline mean curvature flow starting from a compact convex admissible set in . This theorem can handle the facet breaking/bending phenomena, and can be generalized to any anisotropic mean curvature flow. The method provides also a generalized geometric evolution starting from any compact convex set, existing up to the extinction time, satisfying a comparison principle, and defining a continuous semigroup in time. We prove that, when the initial set is convex, our evolution coincides with the flat φ-curvature flow in the sense of Almgren-Taylor-Wang. As a by-product, it turns out that the flat φ-curvature flow starting from a compact convex set is unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren, F.J., Taylor, J.E.: Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Differential Geom. 42, 1–22 (1995)

    Article  MathSciNet  Google Scholar 

  2. Almgren, J.F., Talylor, J.E., Wang, L.-H.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31, 387–438 (1993)

    Article  MathSciNet  Google Scholar 

  3. Altschuler, S., Angenent, S.B., Giga, Y.: Mean curvature flow through singularities for surfaces of rotation. J. Geom. Anal. 5, 293–358 (1995)

    Article  MathSciNet  Google Scholar 

  4. Alvarez, O., Lasry, J.M., Lions, P.L.: Convex viscosity solutions and state constraints. J. Math. Pures Appl. 76, 265–288 (1997)

    Article  MathSciNet  Google Scholar 

  5. Amar, M., Bellettini, G.: A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincaré 11, 91–133 (1994)

    Article  Google Scholar 

  6. Amborsio, L.: Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Scuola Normale Superiore di Pisa, 1997

  7. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, 2000

  8. Angenent, S., Chopp, D.L., Ilmanen, T.: Nonuniqueness of mean curvature flow in R3. Comm. Partial Differential Equations. 20, 1937–1958 (1995)

    Article  MathSciNet  Google Scholar 

  9. Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135, 293–318 (1983)

    Article  MathSciNet  Google Scholar 

  10. Bellettini, G., Caselles, V., Novaga, M.: The Total Variation Flow in . J. Differential Equations. 184, 475–525 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bellettini, G., Novaga, M., Paolini, M.: On a crystalline variational problem I. First variation and global L regularity. Arch. Ration. Mech. Anal. 157, 165–191 (2001)

    Article  Google Scholar 

  12. Bellettini, G., Novaga, M., Paolini, M.: Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces Free Bound. 1, 39–55 (1999)

    Article  MathSciNet  Google Scholar 

  13. Bellettini, G., Novaga, M., Paolini, M.: Characterization of facet–breaking for nonsmooth mean curvature flow in the convex case. Interfaces Free Bound. 3, 415–446 (2001)

    Article  MathSciNet  Google Scholar 

  14. Bellettini, G., Novaga, M.: Approximation and comparison for non-smooth anisotropic motion by mean curvature in . Math. Mod. Meth. Appl. Sc. 10, 1–10 (2000)

    MathSciNet  Google Scholar 

  15. Bence, J., Merriman, B., Osher, S.: Diffusion Generated Motion by Mean Curvature. In: AMS Selected Lectures in Math., The Comput. Crystal Grower's Workshop, edited by J. Taylor. Am. Math Soc., Providence, RI, 1993, p. 73

  16. Brezis, H.: Operateurs Maximaux Monotones et Semi-Groups de Contractions dans les Espaces de Hilbert. North Holland, 1973

  17. Cahn, J.W., Handwerker, C.A., Taylor, J.E.: Geometric models of crystal growth. Acta Metall. Mater. 40, 1443–1474 (1992)

    Article  ADS  Google Scholar 

  18. Cahn, J.W., Hoffman, D.W.: A vector thermodynamics for anisotropic interfaces. 1. Fundamentals and applications to plane surface junctions. Surface Sci. 31, 368–388 (1972)

    Article  ADS  Google Scholar 

  19. Caselles, V., Chambolle, A.: Anisotropic curvature-driven flow of convex sets. Preprint R.I. 528, April 2004, Ecole Polytechnique, Centre de Mathématiques Appliqués.

  20. Chambolle, A.: An algorithm for mean curvature motion. Interfaces Free Bound. 6, 195–218 (2004)

    Article  MathSciNet  Google Scholar 

  21. Delfour, M.C., Zolesio, J.P.: Shapes analysis via oriented distance functions. J. Funct. Anal. 123, 129–201 (1994)

    Article  MathSciNet  Google Scholar 

  22. Delfour, M.C., Zolesio, J.P.: Shapes and Geometries. Analysis, differential calculus, and optimization. Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2001

  23. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. of Math. (2), 130, 453–471 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Evans, L.C.: Convergence of an algorithm for mean curvature motion. Indiana Univ. Math. J. 42, 533–557 (1993)

    Article  MathSciNet  Google Scholar 

  25. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. I. J. Differential Geom. 33, 635–681 (1991)

    Article  Google Scholar 

  26. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc. 330, 321–332 (1992)

    Article  Google Scholar 

  27. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. III. J. Geom. Anal. 3, 121–150 (1992)

    Article  Google Scholar 

  28. Gage, M.E., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differential Geom. 23, 69–96 (1986)

    Article  MathSciNet  Google Scholar 

  29. Giga, Y.: Singular diffusivity-facets, shocks and more. Hokkaido University Preprint Series in Mathematics, Series 604, September 2003

  30. Giga, Y., Goto, S., Ishii, H., Sato, M.H.: Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J. 40, 443–470 (1991)

    Article  MathSciNet  Google Scholar 

  31. Giga, Y., Gurtin, M.E.: A comparison theorem for crystalline evolutions in the plane. Quart. Appl. Math. LIV, 727–737 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gurtin, M.: Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford, 1993

  33. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differential Geom. 20, 237–266 (1984)

    Article  MathSciNet  Google Scholar 

  34. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differential Geom. 31, 285–299 (1990)

    Article  MathSciNet  Google Scholar 

  35. Huisken, G., Sinestrari, C.: Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math. 183, 45–70 (1999)

    Article  MathSciNet  Google Scholar 

  36. Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differential Equations 3, 253–271 (1995)

    Article  MathSciNet  Google Scholar 

  37. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. In: Encyclopedia of Mathematics and its Applications 44. Cambridge University Press, 1993

  38. Taylor, J.E.: Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.) 84, 568–588 (1978)

    Article  Google Scholar 

  39. Taylor, J.E.: II-Mean curvature and weighted mean curvature. Acta Metall. Mater. 40, 1475–1485 (1992)

    Article  ADS  Google Scholar 

  40. White, B.: The nature of singularities in mean curvature flow of mean-convex sets. J. Amer. Math. Soc. 16, 123–138 (2003)

    Article  MathSciNet  Google Scholar 

  41. Yunger, J.: Facet stepping and motion by crystalline curvature. PhD. Thesis, Rutgers University 1998

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Bellettini.

Additional information

Communicated by L.C. Evans

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellettini, G., Caselles, V., Chambolle, A. et al. Crystalline Mean Curvature Flow of Convex Sets. Arch. Rational Mech. Anal. 179, 109–152 (2006). https://doi.org/10.1007/s00205-005-0387-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0387-0

Keywords

Navigation