Quasistatic Crack Growth in Nonlinear Elasticity


In this paper, we prove a new existence result for a variational model of crack growth in brittle materials proposed in [19]. We consider the case of n-dimensional nonlinear elasticity, for an arbitrary n≧1, with a quasiconvex bulk energy and with prescribed boundary deformations and applied loads, both depending on time.

This is a preview of subscription content, log in to check access.


  1. 1.

    Ambrosio, L.: A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B (7) 3, 857–881 (1989)

    Google Scholar 

  2. 2.

    Ambrosio, L.: Existence theory for a new class of variational problems. Arch. Rational Mech. Anal. 111, 291–322 (1990)

    Google Scholar 

  3. 3.

    Ambrosio, L.: On the lower semicontinuity of quasi-convex functionals in SBV. Nonlinear Anal. 23, 405–425 (1994)

    Google Scholar 

  4. 4.

    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford, 2000

  5. 5.

    Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam-London; American Elsevier, New York, 1973

  6. 6.

    Brezis, H.: Convergence in and in L1 under strict convexity. Boundary value problems for partial differential equations and applications, 43–52, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993

  7. 7.

    Chambolle, A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Rational Mech. Anal. 167, 211–233 (2003)

    Google Scholar 

  8. 8.

    Dacorogna, B.: Direct methods in the calculus of variations. Springer-Verlag, Berlin, 1989

  9. 9.

    Dal Maso, G., Francfort, G.A., Toader, R.: Quasi-static crack growth in finite elasticity. Preprint SISSA, Trieste, 2004 (http://www.sissa.it/fa/)

  10. 10.

    Dal Maso, G., Francfort, G.A., Toader, R.: Quasi-static crack evolution in brittle fracture: the case of bounded solutions. Calculus of Variations. Topics from the mathematical heritage of Ennio De Giorgi. Quaderni di Matematica, Dipartimento di Matematica della Seconda Università di Napoli, 2004, to appear (http://www.sissa.it/fa/)

  11. 11.

    Dal Maso, G., Giacomini, A., Ponsiglione, M.: Some qualitative properties of solutions to variational models for quasistatic crack growth. In preparation

  12. 12.

    Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Rational Mech. Anal. 162, 101–135 (2002)

    Google Scholar 

  13. 13.

    De Giorgi, E., Ambrosio, L.: Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82, 199–210 (1988)

  14. 14.

    De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108, 195–218 (1989)

    Google Scholar 

  15. 15.

    Doob, J.L.: Stochastic processes. Wiley, New York, 1953

  16. 16.

    Federer, H.: Geometric measure theory. Springer-Verlag, Berlin, 1969

  17. 17.

    Francfort, G.A., Larsen, C.J.: Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56, 1465–1500 (2003)

    Google Scholar 

  18. 18.

    Francfort, G.A., Marigo, J.-J.: Stable damage evolution in a brittle continuous medium. European J. Mech. A Solids 12, 149–189 (1993)

    Google Scholar 

  19. 19.

    Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Google Scholar 

  20. 20.

    Griffith, A.: The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London Ser. A 221, 163–198 (1920)

    Google Scholar 

  21. 21.

    Hahn, H.: Über Annäherung an Lebesgue’sche Integrale durch Riemann’sche Summen. Sitzungsber. Math. Phys. Kl. K. Akad. Wiss. Wien 123, 713–743 (1914)

    Google Scholar 

  22. 22.

    Henstock, R.: A Riemann-type integral of Lebesgue power. Canad. J. Math. 20, 79–87 (1968)

    Google Scholar 

  23. 23.

    Krasnosel’skii, M.A.: Topological methods in the theory of nonlinear integral equations. Pergamon Press, Oxford, 1964

  24. 24.

    Kristensen, J.: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313, 653–710 (1999)

    Google Scholar 

  25. 25.

    Mainik, A., Mielke, A.: Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differential Equations, 2004, to appear.

  26. 26.

    Mawhin, J.: Analyse. Fondements, techniques, évolution. Second edition. Accès Sciences. De Boeck Université, Brussels, 1997

  27. 27.

    Mielke, A., Theil, F.: A mathematical model for rate-independent phase transformations with hysteresis. In: Alber, H.-D., Balean, R., Farwig, R. (eds.), Proceedings of the Workshop on ‘‘Models of continuum mechanics in analysis and engineering’’ (1999), Shaker-Verlag, pp. 117–129

  28. 28.

    Mielke, A., Theil, F., Levitas, V.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal. 162, 137–177 (2002)

    Google Scholar 

  29. 29.

    Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967

  30. 30.

    Saks, S.: Sur les fonctions d’intervalle. Fund. Math. 10, 211–224 (1927)

    Google Scholar 

  31. 31.

    Visintin, A.: Strong convergence results related to strict convexity. Commun. Partial Differential Equations 9, 439–466 (1984)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gianni Dal Maso.

Additional information

Communicated by A. Mielke

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maso, G., Francfort, G. & Toader, R. Quasistatic Crack Growth in Nonlinear Elasticity. Arch. Rational Mech. Anal. 176, 165–225 (2005). https://doi.org/10.1007/s00205-004-0351-4

Download citation


  • Neural Network
  • Brittle
  • Complex System
  • Nonlinear Dynamics
  • Applied Load