Skip to main content
Log in

Maxwell’s Equations with Vector Hysteresis

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

Electromagnetic processes in magnetic materials are described by Maxwell’s equations. In ferrimagnetic insulators, assuming that D = ε E, we have the equation

In ferromagnetic metals, neglecting displacement currents and assuming Ohm’s law, we instead get

Alternatively, under quasi-stationary conditions, for either material we can also deal with the magnetostatic equations:

(Here fext and Jext are prescribed time-dependent fields.) In any of these settings, the dependence of M on H is represented by a constitutive law accounting for hysteresis: M= (H), being a vector extension of the relay model. This is characterized by a rectangular hysteresis loop in a prescribed x-dependent direction, and accounts for high anisotropy and nonhomogeneity. The discontinuity in this constitutive relation corresponds to the possible occurrence of free boundaries.

Weak formulations are provided for Cauchy problems associated with the above equations; existence of a solution is proved via approximation by time-discretization, derivation of energy-type estimates, and passage to the limit. An analogous representation is given for hysteresis in the dependence of P on E in ferroelectric materials. A model accounting for coupled ferrimagnetic and ferroelectric hysteresis is considered, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouges, F., Soyeur, A.: On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. T.M.A. 18, 1071–1084 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertotti, G.: Hysteresis in Magnetism. Academic Press, Boston, 1998

  3. Bertsch, M., Podio Guidugli, P., Valente, V.: On the dynamics of deformable ferromagnets, I: Global weak solutions for soft ferromagnets at rest. Ann. Mat. Pura Appl. 179, 331–360 (2001)

    MathSciNet  Google Scholar 

  4. Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Springer, Berlin, 1996

  5. Brown, W.F., Jr.: Micromagnetics. Interscience, New York, 1963

  6. Chikazumi, S., Charap, S.H.: Physics of Magnetism. Wiley, New York, 1964

  7. Cullity, B.D.: Introduction to Magnetic Materials. Addison-Wesley, Reading, 1972

  8. Damlamian, A., Visintin, A.: Une généralisation vectorielle du modèle de Preisach pour l’hystérésis. C.R. Acad. Sci. Paris, Série I 297, 437–440 (1983)

    Google Scholar 

  9. Dautray, R., Lions, J.L.: Analyse Mathématique et Calcul Numérique, vol. 6. Masson, Paris, 1988

  10. Della Torre, E.: Magnetic Hysteresis. I.E.E.E. Press, 1999

  11. Efendiev, M.A.: On the compactness of the stable set for rate-independent processes. Communications in P.A. Analysis 2, 495–509 (2003)

    MATH  Google Scholar 

  12. Fabrizio, M., Morro, A.: Electromagnetism of Continuous Media. Oxford U.P., Oxford, 2003

  13. Hilpert, M.: On uniqueness for evolution problems with hysteresis. In: Mathematical Models for Phase Change Problems J.-F. Rodrigues (ed.), Birkhäuser, Basel, 1989, pp. 377–388

  14. Hubert, A., Schäfer, R.: Magnetic Domains. Springer, Berlin, 1998

  15. Joly, J.L., Mètivier, G., Rauch, J.: Global solutions to Maxwell equations in a ferromagnetic medium. Ann. Henri Poincaré 1, 307–340 (2000)

    Google Scholar 

  16. Joly, P., Komech, A., Vacus, O.: On transitions to stationary states in a Maxwell–Landau–Lifschitz–Gilbert system. S.I.A.M. J. Math. Anal. 31, 346–374 (2000)

    MATH  Google Scholar 

  17. Kraus, J.D., Fleisch, D.A.: Electromagnetics. McGraw-Hill, Boston, 1999

  18. Krasnosel’skii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Berlin, 1989 (Russian ed. Nauka, Moscow 1983)

  19. Krejčí, P.: Convexity, Hysteresis and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo, 1997

  20. Landau, L., Lifshitz, E.: On the theory of dispersion of magnetic permeability in ferromagnetic bodies. Physik. Z. Sowietunion 8, 153–169 (1935)

    MATH  Google Scholar 

  21. Mayergoyz, I.D.: Vector Preisach model of hysteresis. J. Appl. Phys. 63, 2995–3000 (1988)

    Article  Google Scholar 

  22. Mayergoyz, I.D.: Mathematical Models of Hysteresis. Springer, New York, 1991

  23. Mayergoyz, I.D., Friedman, G.: Isotropic vector Preisach model of hysteresis. J. Appl. Phys. 61, 4022–402 (1987)

    Article  Google Scholar 

  24. Mielke, A.: Analysis of energetic models for rate-independent materials. In: Proceedings of the I.C.M., Vol. III (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 817–828

  25. Mielke, A., Theil, F.: On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl. 2, 151–189 (2004)

    Google Scholar 

  26. Mielke, A., Theil, F., Levitas, V.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal. 162, 137–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morrish, A.H.: The Physical Principles of Magnetism. Krieger, Malabar, 1965

  28. Murat, F.: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa 5, 489–507 (1978)

    MathSciNet  MATH  Google Scholar 

  29. Preisach, F.: Über die magnetische Nachwirkung. Z. Physik 94, 277–302 (1935)

    Google Scholar 

  30. Roubícek, T., Kruzík, M.: Microstructure evolution model in micromagnetics. Zeits. Angew. Math. Physik 55, 159–182 (2004)

    Google Scholar 

  31. Simon, J.: Compact sets in the space Lp(0,T; B). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  32. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriott-Watt Symposium, Vol. IV, R.J. Knops (ed.), Pitman, London, 1979, pp. 136–212

  33. Temam, R.: Navier-Stokes Equations. North-Holland, Amsterdam, 1984

  34. Visintin, A.: On the Preisach model for hysteresis. Nonlinear Analysis, T.M.A. 9, 977–996 (1984)

    Google Scholar 

  35. Visintin, A.: On Landau-Lifshitz equations in ferromagnetism. Japan J. Appl. Math. 2, 69–84 (1985)

    MathSciNet  MATH  Google Scholar 

  36. Visintin, A.: Differential Models of Hysteresis. Springer, Berlin, 1994

  37. Visintin, A.: Models of Phase Transitions. Birkhäuser, Boston, 1996

  38. Visintin, A.: Quasilinear hyperbolic equations with hysteresis. Ann. Inst. H. Poincaré. Analyse non lineaire 19, 451–476 (2002)

    Article  MATH  Google Scholar 

  39. Visintin, A.: Vector Preisach model and Maxwell’s equations. Physica B 306, 21–25 (2001)

    Article  Google Scholar 

  40. Visintin, A.: On hysteresis in elasto-plasticity and in ferromagnetism. Int. J. Nonlinear Mechanics 37, 1283–1298 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Mielke

Acknowledgement This research was partly supported by the project “Free boundary problems in applied sciences” of Italian M.I.U.R.. I gratefully acknowledge the useful suggestions from the reviewers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visintin, A. Maxwell’s Equations with Vector Hysteresis. Arch. Rational Mech. Anal. 175, 1–37 (2005). https://doi.org/10.1007/s00205-004-0333-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0333-6

Keywords

Navigation