Skip to main content
Log in

Homogenization of Periodic Systems with Large Potentials

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

We consider the homogenization of a system of second-order equations with a large potential in a periodic medium. Denoting by ε the period, the potential is scaled as ε−2. Under a generic assumption on the spectral properties of the associated cell problem, we prove that the solution can be approximately factorized as the product of a fast oscillating cell eigenfunction and of a slowly varying solution of a scalar second-order equation. This result applies to various types of equations such as parabolic, hyperbolic or eigenvalue problems, as well as fourth-order plate equation. We also prove that, for well-prepared initial data concentrating at the bottom of a Bloch band, the resulting homogenized tensor depends on the chosen Bloch band. Our method is based on a combination of classical homogenization techniques (two-scale convergence and suitable oscillating test functions) and of Bloch waves decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguirre, F., Conca, C.: Eigenfrequencies of a tube bundle immersed in a fluid. Appl. Math. Optim. 18, 1–38 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Albert, J.H.: Genericity of simple eigenvalues for elliptic pde’s. Proc. A.M.S. 48, 413–418 (1975)

    MATH  Google Scholar 

  3. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Allaire, G.: Dispersive limits in the homogenization of the wave equation. Annales de la Faculté des Sciences de Toulouse 12, 415–431 (2003)

    MathSciNet  Google Scholar 

  5. Allaire, G., Capdeboscq, Y.: Homogenization of a spectral problem in neutronic multigroup diffusion. Comput. Methods Appl. Mech. Engrg. 187, 91–117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Allaire, G., Capdeboscq, Y.: Homogenization and localization for a 1-d eigenvalue problem in a periodic medium with an interface. Annali di Matematica 181, 247–282 (2002)

    Article  MathSciNet  Google Scholar 

  7. Allaire, G., Conca, C.: Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures et Appli. 77, 153–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Allaire, G., Malige, F.: Analyse asymptotique spectrale d’un problème de diffusion neutronique. C. R. Acad. Sci. Paris Série I 324, 939–944 (1997)

    Article  MATH  Google Scholar 

  9. Allaire, G., Piatnitski, A.: Uniform Spectral Asymptotics for Singularly Perturbed Locally Periodic Operators. Com. in PDE 27, 705–725 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Allaire, G., Piatnitski, A.: Homogenization of the Schrödinger equation and effective mass theorems. Internal report, n. 540, CMAP, Ecole Polytechnique (2004)

  11. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. North-Holland, Amsterdam, 1978

  12. Brahim-Otsmane, S., Francfort, G., Murat, F.: Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. (9) 71, 197–231 (1992)

    Google Scholar 

  13. Capdeboscq, Y.: Homogenization of a diffusion equation with drift. C. R. Acad. Sci. Paris Série I 327, 807–812 (1998)

    MATH  Google Scholar 

  14. Conca, C., Orive, R., Vanninathan, M.: Bloch approximation in homogenization and applications. SIAM J. Math. Anal. 33, 1166–1198 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Conca, C., Planchard, J., Vanninathan, M.: Fluids and periodic structures. RMA 38, J. Wiley & Masson, Paris, 1995

  16. Conca, C., Vanninathan, M.: Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57, 1639–1659 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Geymonat, G., Müller, S., Triantafyllidis, N.: Homogenization of non-linearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Rational Mech. Anal. 122, 231–290 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer Verlag, 1994

  19. Kato, T.: Perturbation theory for linear operators. Springer-Verlag, Berlin, 1966

  20. Kozlov, S.: Reducibility of quasiperiodic differential operators and averaging. Trans. Moscow Math. Soc. (2), 101–126 (1984)

  21. Myers, H.P.: Introductory solid state physics. Taylor & Francis, London, 1990

  22. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Pedersen, F.: Simple derivation of the effective-mass equation using a multiple-scale technique. Eur. J. Phys. 18, 43–45 (1997)

    Article  Google Scholar 

  24. Poupaud, F., Ringhofer, C.: Semi-classical limits in a crystal with exterior potentials and effective mass theorems. Comm. Partial Differential Equations 21, 1897–1918 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Reed, M., Simon, B.: Methods of modern mathematical physics. Academic Press, New York, 1978

  26. Sevost’janova, E.V.: An asymptotic expansion of the solution of a second order elliptic equation with periodic rapidly oscillating coefficients. Math. USSR Sbornik 43, 181–198 (1982)

    Google Scholar 

  27. Siess, V.: Homogénéisation des équations de criticité en transport neutronique. PhD Thesis, Paris 6 University, 2003

  28. Vanninathan, M.: Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90, 239–271 (1981)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments.

This work was partly done when A. Piatnitski and M. Vanninathan were visiting the Centre de Mathématiques Appliquées at Ecole Polytechnique. They gratefully acknowledge the warm hospitality received during their stay. Y. Capdeboscq thanks L.C. Evans for bringing reference [23] to his attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Allaire.

Additional information

Communicated by G. Milton

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allaire, G., Capdeboscq, Y., Piatnitski, A. et al. Homogenization of Periodic Systems with Large Potentials. Arch. Rational Mech. Anal. 174, 179–220 (2004). https://doi.org/10.1007/s00205-004-0332-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0332-7

Keywords

Navigation