Skip to main content
Log in

Long-Time Asymptotics of Kinetic Models of Granular Flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

We analyze the long-time asymptotics of certain one-dimensional kinetic models of granular flows, which have been recently introduced in [22] in connection with the quasi-elastic limit of a model Boltzmann equation with dissipative collisions and variable coefficient of restitution. These nonlinear equations, classified as nonlinear friction equations, split naturally into two classes, depending on whether or not the temperature of their similarity solutions (homogeneous cooling states) reduce to zero in finite time. For both classes, we show uniqueness of the solution by proving decay to zero in the Wasserstein metric of any two solutions with the same mass and mean velocity. Furthermore, if the temperature of the similarity solution decays to zero in finite time, we prove, by computing explicitly upper bounds for the lifetime of the solution in terms of the length of the support, that the temperature of any other solution with initially bounded support must also decay to zero in finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. PDEs. 26, 43–100 (2001)

    Article  MATH  Google Scholar 

  2. Barenblatt, G.I.: Scaling, Self–similarity, and Intermediate Asymptotics. Cambridge Univ. Press, New York, 1996

  3. Benedetto, D., Caglioti, E., Pulvirenti, M.: A kinetic equation for granular media. Mat. Mod. Numer. Anal. 31, 615–641 (1997)

    MATH  Google Scholar 

  4. Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M.: A non Maxwellian distribution for one–dimensional granular media. J. Statist. Phys. 91, 979–990 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobylev, A.V., Carrillo, J.A., Gamba, I.: On some properties of kinetic and hydrodynamics equations for inelastic interactions. J. Statist. Phys. 98, 743–773 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brilliantov, N.V., Pöschel, T.: Granular gases with impact-velocity dependent restitution coefficient. In: Granular Gases, T. Pöschel, S. Luding, (eds)., Vol. 564, Lecture Notes in Physics, Springer Verlag, Berlin, 2000 pp. 100–124

  7. Caglioti, E., Villani, C.: Homogeneous cooling states are not always good approximation to granular flows. Arch. Rational Mech. Anal. 163, 329–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carrillo, J.A., Jüngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic equations and systems and generalized Sobolev inequalities. Monatsch. Math. 131, 1–82 (2001)

    Article  Google Scholar 

  9. Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Revista Mat. Iberoamericana 19, 1–48 (2003)

    MATH  Google Scholar 

  10. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Springer Series in Applied Mathematical Sciences, Vol. 106 Springer-Verlag, 1994

  11. Esipov, S., Pöschel, T.: The granular phase diagram. J. Stat. Phys. 86, 1385–1395 (1997)

    MATH  Google Scholar 

  12. Fréchet, M.: Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon Sect. A 14, 53–77 (1951)

    MathSciNet  Google Scholar 

  13. Goldman, D., Shattuck, M.D., Bizon, C., McCormick, W.D., Swift, J.B., Swinney, H.L.: Absence of inelastic collapse in a realistic three ball model. Phys. Rew. E 57, 4831–4833 (1998)

    Article  Google Scholar 

  14. Goldhirsch, I.: Scales and kinetics of granular flows. Chaos 9, 659–672 (1999)

    Article  MATH  Google Scholar 

  15. Hoeffding, W.: Masstabinvariante Korrelationstheorie. Schriften des Mathematisches Instituts und des Instituts für Angewandte Mathematik der Universitat Berlin 5, 179–233 (1940)

    Google Scholar 

  16. Kantorovich, L.: On translation of mass. Dokl. AN SSSR 37, 227–229 (1942) (in Russian)

    Google Scholar 

  17. McNamara, S., Young, W.R.: Inelastic collapse and clumpining a one–dimensional granular medium. Phys. Fluids A 4, 496–504 (1992)

    Article  Google Scholar 

  18. McNamara, S., Young, W.R.: Kinetics of a one–dimensional granular medium in the quasi-elastic limit. Phys. Fluids A 5, 34–45 (1993)

    Article  MathSciNet  Google Scholar 

  19. Du, Y., Li, H., Kadanoff, L.P.: Breakdown of hydrodynamics in a one–dimensional system of inelastic particles. Phys. Rev. Lett. 74, 1268–1271 (1995)

    Article  Google Scholar 

  20. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26, 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramirez, R., Pöschel, T., Brilliantov, N.V., Schwager, T.: Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60, 4465–4472 (1999)

    Article  Google Scholar 

  22. Toscani, G.: One-dimensional kinetic models of granular flows. RAIRO Modél Math. Anal. Numér. 34, 1277–1292 (2000)

    Article  MATH  Google Scholar 

  23. Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203, 667–706 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Toscani, G., Villani, C.: Unpublished work

  25. Vajda, I.: Theory of statistical Inference and Information. Kluwer Academic Publishers, Dordrecht, 1989

  26. Wasserstein, L.N.: Markov processes on countable product space describing large systems of automata. Probl. Pered. Inform. 5, 64–73 (1969) (in Russian)

    Google Scholar 

  27. Whitt, W.: Bivariate distributions with given marginals. Ann. Statist. 6, 1280–1289 (1976)

    Google Scholar 

  28. Zolotarev, V.M.: Probability Metrics. Theory Prob. Appl. 28, 278–302 (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Otto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Toscani, G. Long-Time Asymptotics of Kinetic Models of Granular Flows. Arch. Rational Mech. Anal. 172, 407–428 (2004). https://doi.org/10.1007/s00205-004-0307-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0307-8

Keywords

Navigation