Skip to main content

Advertisement

Log in

Hyperbolicity of the Nonlinear Models of Maxwell’s Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class H s with s>1+d/2.

The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex.

Since the energy conservation law does not derive from the system of conservation laws itself (Faraday’s and Ampère’s laws), but also needs the compatibility relations div B=div D=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63, 337–403 (1977)

    MATH  Google Scholar 

  2. Benzoni-Gavage, S., Serre, D.: First-order hyperbolic systems of partial differential equations. With applications. In preparation

  3. Boillat, G.: Chocs caractéristiques. C.R. Acad. Sci. Paris, Série I 274, 1018–1021 (1972)

    Google Scholar 

  4. Born, M., Infeld, L.: Foundations of a new field theory. Proc. Roy. Soc. London, A 144, 425–451 (1934)

    Google Scholar 

  5. Brenier, Y.: Hydrodynamic structure of the augmented Born-Infeld equations. To appear in Arch. Rational Mech. Anal.

  6. Ciarlet, Ph.: Mathematical elasticity. North–Holland, Amsterdam, 1988

  7. Coleman, B.D., Dill, E.H.: Thermodynamic restrictions on the constitutive equations of electromagnetic theory. Z. Angew. Math. Phys. 22, 691–702 (1971)

    MATH  Google Scholar 

  8. Dafermos, C.: Quasilinear hyperbolic systems with involutions. Arch. Rational Mech. Anal. 94, 373–389 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Dafermos, C.: Hyperbolic conservation laws in continuum physics. Grundlehren der mathematischen Wissenschaften, 325. Springer-Verlag, Heidelberg, 2000

  10. Demoulini, S., Stuart, D., Tzavaras, A.: A variational approximation scheme for three–dimensional elastodynamics with polyconvex energy. Arch. Rational Mech. Anal. 157, 325–344 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Godunov, S.: Lois de conservation et intégrales d’énergie. Lecture Notes in Math. 1270, Springer-Verlag, Heidelberg, 1987, pp. 135–149

  12. Métivier, G.: Problèmes de Cauchy et ondes non linéaires. Journées EDPs de St-Jean-de-Monts, 1986. Available on http://www.numdam.org

  13. Serre, D.: Formes quadratiques et calcul des variations. J. Maths. Pures Appl. 62, 177–196 (1983)

    MathSciNet  MATH  Google Scholar 

  14. Serre, D.: Les ondes planes en électromagnétisme non-linéaire. Physica D 31, 227–251 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Serre, D.: Systems of conservation laws. Cambridge Univ. Press, Cambridge, vol I: 1999, vol II: 2000

  16. Taylor, M.: Pseudodifferential operators. Princeton University Press, Princeton, 1981

  17. Terpstra, F.J.: Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung. Math. Ann. 116, 166–180 (1938)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serre, D. Hyperbolicity of the Nonlinear Models of Maxwell’s Equations. Arch. Rational Mech. Anal. 172, 309–331 (2004). https://doi.org/10.1007/s00205-003-0303-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-003-0303-4

Keywords

Navigation