Skip to main content
Log in

Stability of Large Ekman Boundary Layers in Rotating Fluids

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

The aim of this paper is to investigate the stability of Ekman boundary layers for rotating fluids when the Ekman number and the Rossby number go to zero. More precisely, we prove that spectral stability implies linear and nonlinear stabilities of approximate solutions. In particular, we replace the smallness condition obtained with energy methods in [5] by a weaker spectral condition which is sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Bony, J-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14, 209–246 (1981)

    Google Scholar 

  3. Chazarain, J., Piriou, A.: Introduction à la théorie des équations aux dérivées partielles linéaires. Gauthier-Villars, Paris, 1981

  4. Chemin, J-Y., Desjardins, B., Gallagher, I., Grenier, E.: Ekman boundary layers in rotating fluids. ESAIM Control Optim. Calc. Var. 8, 441–446 (2002)

    Article  MathSciNet  Google Scholar 

  5. Desjardins, B., Dormy, E., Grenier, E.: Stability of mixed Ekman-Hartmann boundary layers. Nonlinearity 12, 181–199 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Desjardins, B., Grenier, E.: Linear instability implies nonlinear instability for various boundary layers. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 87–106 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gardner, R.A., Zumbrun, K.: The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51, 797–855 (1998)

    MathSciNet  Google Scholar 

  8. Gérard-Varet, D.: A geometric optics approach to fluid boundary layers. Comm. Partial Differential Equations 28, 1605–1626 (2003)

    Article  Google Scholar 

  9. Greenspan, H.P.: The theory of rotating fluids. Breukelen Press, 1990

  10. Grenier, E., Masmoudi, N.: Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations 22, 953–975 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Grenier, E., Rousset, F.: Stability of one-dimensional boundary layers by using Green’s functions. Comm. Pure Appl. Math. 54, 1343–1385 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guès, O., Métivier, G., Williams, M., Zumbrun, K.: Multidimensional viscous shocks II: the small viscosity limit. Comm. Pure Appl. Math. 57, 141–218 (2004)

    Article  Google Scholar 

  13. Kreiss, H.-O.: Initial boundary value problems for hyperbolic systems. Comm. Pure & Appl. Math. 23, 277–298 (1970)

    Google Scholar 

  14. Kreiss, H.-O., Lorenz, J.: Initial-boundary value problems and the Navier-Stokes equations. Academic Press Inc., Boston, MA, 1989

  15. Lilly, D.K.: On the instability of Ekman boundary flow. J. Atmos. Sci. 23, 481–494 (1966)

    Article  Google Scholar 

  16. Masmoudi, N.: Ekman layers of rotating fluids: the case of general initial data. Comm. Pure Appl. Math. 53, 432–483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Métivier, G.: Stability of multidimensional shocks. In: Advances in the theory of shock waves, volume~47 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 2001, pp. 25–103

  18. Métivier, G., Zumbrun, K.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Available at http://www.ufr-mi.u-bordeaux.fr/∼ metivier/preprints.html, Preprint, 2002

  19. Meyer, Y.: Remarques sur un théorème de J.-M. Bony. In: Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), number suppl. 1, 1981, pp. 1–20

  20. Mokrane, A.: Problèmes mixtes hyperboliques non linéaires. Thesis, Université de Rennes, 1987

  21. Pedlosky, J.: Geophysical fluid dynamics. Springer Verlag, 1979

  22. Rousset, F.: Viscous limits for strong shocks of systems of conservation laws. SIAM J. Math. Anal. 35, 492–519 (2003)

    Article  Google Scholar 

  23. Temam, R.: Navier-Stokes equations and nonlinear functional analysis, volume~66 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 1995

  24. Zumbrun, K., Serre, D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–992 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rousset.

Additional information

C.M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousset, F. Stability of Large Ekman Boundary Layers in Rotating Fluids. Arch. Rational Mech. Anal. 172, 213–245 (2004). https://doi.org/10.1007/s00205-003-0302-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-003-0302-5

Keywords

Navigation