Skip to main content
Log in

Slow Convergence to Vortex Patches in Quasigeostrophic Balance

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

Taking advantage of dispersive effects – which supposes a flow extended in the whole space – a sluggish convergence of the solutions of the Boussinesq equations to a solution of the quasigeostrophic system, when the Rossby number tends to zero, can be proved under weaker assumptions on the initial data than usual. In particular, no assumption of well-preparedness is needed.Two examples are given, both involving fields with striated potential vorticity. A result of convergence to a vortex patch is deduced from one of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A., Mahalov, A., Nicolaenko, B., Zhou, Y.: On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations. Theor. Comput. Fluid Dyn. 9, 223–251 (1997)

    MATH  Google Scholar 

  2. Babin, A.V., Mahalov, A., Nicolaenko, B.: Resonances and regularity for Boussinesq equations. Russ. J. Math. Phys. 4, 417–428 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Bourgeois, A.J., Beale, J.: Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean. SIAM J. Math. Anal. 25, 1023–1068 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Chemin, J.-Y.: À propos d’un problème de pénalisation de type antisymétrique. J. Math. Pures Appl. (9) 76, 739–755 (1997)

    Google Scholar 

  5. Chemin, J.-Y.: Perfect incompressible fluids. Volume~14 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, 1998

  6. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Anisotropy and dispersion in rotating fluids. Preprint of Université d’Orsay, 1999. Available as http://www.math. u-psud.fr/~biblio/pub/1999/fic/ppo_1999_69.ps

  7. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Fluids with anisotropic viscosity. Special issue for R. Temam’s 60th birthday. M2AN Math. Model. Numer. Anal. 34, 315–335 (2000)

  8. Danchin, R.: Évolution temporelle d’une poche de tourbillon singulière. Comm. Partial Differential Equations 22, 685–721 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Danchin, R.: Poches de tourbillon visqueuses. J. Math. Pures Appl. (9) 76, 609–647 (1997)

    Google Scholar 

  10. Danchin, R.: Evolution of a cusp-like singularity in a vortex patch. In: Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich, 1998), Volume 129 of Internat. Ser. Numer. Math. Birkhäuser, Basel, 1999, pp. 189–194

  11. Danchin, R.: Persistance de structures géométriques et limite non visqueuse pour les fluides incompressibles en dimension quelconque. Bull. Soc. Math. France 127, 179–227 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Danchin, R.: Évolution d’une singularité de type cusp dans une poche de tourbillon. Rev. Mat. Iberoamericana 16, 281–329 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm. Partial Differential Equations 26, 1183–1233 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Danchin, R.: Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Ann. Sci. École Norm. Sup. (4) 35, 27–75 (2002)

    Google Scholar 

  15. Delacour, P.: Poches de tourbillon régulières en dimension 3. PhD thesis, Université de Nantes, décembre 2001

  16. Depauw, N.: Poche de tourbillon pour Euler 2D dans un ouvert à bord. J. Math. Pures Appl. (9) 78, 313–351 (1999)

    Google Scholar 

  17. Desjardins, B., Grenier, E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455, 2271–2279 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Doering, C.R., Gibbon, J.D.: Applied analysis of the Navier-Stokes equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1995

  19. Dutrifoy, A.: Examples of dispersive effects in non-viscous rotating fluids. Submitted, July 2003

  20. Dutrifoy, A.: On 3-D vortex patches in bounded domains. Comm. Partial Differential Equations 28, 1237–1263 (2003)

    MATH  Google Scholar 

  21. Dutrifoy, A., Hmidi, T.: The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. C. R. Acad. Sci. Paris Sér. I Math. 336, 471–474 (2003)

    MATH  Google Scholar 

  22. Dutrifoy, A., Hmidi, T.: The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. Prépublication du CMAT de l’École polytechnique, 2003

  23. Embid, P.F., Majda, A.J.: Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity. Comm. Partial Differential Equations 21, 619–658 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Gallagher, I. The tridimensional Navier-Stokes equations with almost bidimensional data: stability, uniqueness, and life span. Internat. Math. Res. Notices 18, 919–935 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Gallagher, I.: Applications of Schochet’s methods to parabolic equations. J. Math. Pures Appl. (9) 77, 989–1054 (1998)

    Google Scholar 

  26. Gamblin, P., Saint Raymond, X.: On three-dimensional vortex patches. Bull. Soc. Math. France 123, 375–424 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133, 50–68 (1995)

    Article  MATH  Google Scholar 

  28. Greenspan, H.: The theory of rotating fluids. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge, 1980

  29. Hörmander, L.: The analysis of linear partial differential operators, I. Volume 256 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition, 1990

  30. Huang, C.: Remarks on regularity of non-constant vortex patches. Commun. Appl. Anal. 3, 449–459 (1999)

    MathSciNet  Google Scholar 

  31. Huang, C.: Singular integral system approach to regularity of 3D vortex patches. Indiana Univ. Math. J. 50, 509–552 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Iftimie, D.: The approximation of the quasigeostrophic system with the primitive systems. Asymptotic Analysis 21, 89–97 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34, 481–524 (1981)

    MathSciNet  MATH  Google Scholar 

  34. Lions, J., Temam, R., Wang, S.: Models of the coupled atmosphere and ocean (CAO I). Comput. Mech. Adv.~1, 5–54 (1993)

    Google Scholar 

  35. Lions, J.L., Temam, R., Wang, S.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5, 237–288 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Lions, J.-L., Temam, R., Wang, S.: On the equations of the large-scale ocean. Nonlinearity 5, 1007–1053 (1992)

    MathSciNet  MATH  Google Scholar 

  37. Lions, J.-L., Temam, R., Wang, S.: Models for the coupled atmosphere and ocean. Comput. Mech. Adv. 1, 3–4 (1993)

    Google Scholar 

  38. Lions, J.-L., Temam, R., Wang, S.: Geostrophic asymptotics of the primitive equations of the atmosphere. Topol. Methods Nonlinear Anal. 4, 253–287 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Lions, J.-L., Temam, R., Wang, S.: Mathematical theory for the coupled atmosphere-ocean models (CAO III). J. Math. Pures Appl. (9) 74, 105–163 (1995)

    Google Scholar 

  40. Lions, J.-L., Temam, R., Wang, S.: A simple global model for the general circulation of the atmosphere. Commun. Pure Appl. Math. 50, 707–752 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Majda, A.: Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math. S187–S220 (1986)

  42. Pedlosky, J.: Geophysical fluid dynamics. 2nd edn. (Study ed.). Springer-Verlag, New York. 1987

  43. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. Volume~3 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 1996

  44. Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Differential Equations 114, 476–512 (1994)

    MathSciNet  MATH  Google Scholar 

  45. Triebel, H.: Theory of function spaces. Volume 78 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1983

  46. Ukai, S.: The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26, 323–331 (1986)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, P., Qiu, Q.J.: Propagation of higher-order regularities of the boundaries of 3-D vortex patches. Chinese Ann. Math. Ser. A 18, 381–390 (1997)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, P., Qiu, Q.J.: The three-dimensional revised vortex patch problem for the system of incompressible Euler equations. Acta Math. Sinica 40, 437–448 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Dutrifoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutrifoy, A. Slow Convergence to Vortex Patches in Quasigeostrophic Balance. Arch. Rational Mech. Anal. 171, 417–449 (2004). https://doi.org/10.1007/s00205-003-0295-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-003-0295-0

Keywords

Navigation