Skip to main content
Log in

Higher-Order Quasiconvexity Reduces to Quasiconvexity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

In this paper it is shown that higher-order quasiconvex functions suitable in the variational treatment of problems involving second derivatives may be extended to the space of all matrices as classical quasiconvex functions. Precisely, it is proved that a smooth strictly 2-quasiconvex function with p-growth at infinity, p>1, is the restriction to symmetric matrices of a 1-quasiconvex function with the same growth. As a consequence, lower-semicontinuity results for second-order variational problems are deduced as corollaries of well-known first-order theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E. Fusco N.: Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86, 125–145 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, E., Fusco, N. Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, New York: Oxford University Press, 2000

  3. Ball, J.M., Currie, J.C., Olver, P.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174 (1981)

    MathSciNet  MATH  Google Scholar 

  4. Carriero, M., Leaci, A., Tomarelli, F.: Special bounded Hessian and elastic-plastic plate. Rend. Accad. Naz. Sci. XL Mem. Mat. (4) 25, 233–258 (1992)

  5. Carriero, M. Leaci, A. Tomarelli, F.: Strong minimizers of Blake & Zisserman functional. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15, 257–285 (1997)

    Google Scholar 

  6. Choksi, R., Kohn, R.V., Otto, F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math. Phys. 201, 61–79 (1999)

    Google Scholar 

  7. Conti, S., Fonseca, I., Leoni, G.: A Γ -convergence result for the two-gradient theory of phase transitions. Comm. Pure Appl. Math. 55, 857–936 (2002)

    Google Scholar 

  8. Dacorogna, B.: Direct methods in the calculus of variations. Applied Mathematical Sciences, 78. Berlin: Springer-Verlag, 1989

  9. DeSimone, A.: Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125, 99–143 (1993)

    Google Scholar 

  10. Fonseca, I., Leoni, G., Malý, J., Paroni, R.: A note on Meyers’ theorem in W k,1. Trans. Am. Math. Soc. 354, 3723–3741 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fonseca, I., Leoni, G., Paroni, R.: On lower semicontinuity in BH p and 2-quasi-convexification. Calc. Var. and Partial Differential Equations 17, 283–309 (2003)

    MATH  Google Scholar 

  12. Fonseca, I., Müller, S.: A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30, 1355–1390 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Fonseca, I., Müller, S., Pedregal, P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29, 736–756 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fusco, N.: Quasiconvexity and semicontinuity for higher-order multiple integrals. Ricerche Mat. 29, 307–323 (1980), in Italian

    Google Scholar 

  15. Guidorzi, M., Poggiolini, L.: Lower semicontinuity for quasiconvex integrals of higher order. NoDEA Nonlinear Diff. Eqs. Appl. 6, 227–246 (1999)

    Article  MATH  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften, Vol. 224. Berlin-New York: Springer-Verlag, 1977

  17. Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47, 405–435 (1994)

    Google Scholar 

  18. Kristensen, J.: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313, 653–710 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal. 115, 329–365 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Meyers, N.: Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Am. Math. Soc. 119, 125–149 (1965)

    MATH  Google Scholar 

  21. Müller, S.: Variational models for microstructures and phase transitions. Lecture Notes, MPI Leipzig, 1998

  22. Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. 157, 715–742 (2003)

    Google Scholar 

  23. Owen, D.R., Paroni, R.: Second-order structured deformations. Arch. Ration. Mech. Anal. 155, 215–235 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rivière, T., Serfaty, S.: Limiting domain wall energy for a problem related to micromagnetics. Comm. Pure Appl. Math. 54, 294–338 (2001)

    Google Scholar 

  25. Šverák V.: New examples of quasiconvex functions. Arch. Rational Mech. Anal. 119, 293–300 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Fonseca.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dal Maso, G., Fonseca, I., Leoni, G. et al. Higher-Order Quasiconvexity Reduces to Quasiconvexity. Arch. Rational Mech. Anal. 171, 55–81 (2004). https://doi.org/10.1007/s00205-003-0278-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-003-0278-1

Keywords

Navigation