Skip to main content

Advertisement

Log in

A review of cardiovascular effects and underlying mechanisms of legacy and emerging per- and polyfluoroalkyl substances (PFAS)

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) poses the leading threats to human health and life, and their occurrence and severity are associated with exposure to environmental pollutants. Per- and polyfluoroalkyl substances (PFAS), a group of widely used industrial chemicals, are characterized by persistence, long-distance migration, bioaccumulation, and toxicity. Some PFAS, particularly perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanesulfonic acid (PFHxS), have been banned, leaving only legacy exposure to the environment and human body, while a number of novel PFAS alternatives have emerged and raised concerns, such as polyfluoroalkyl ether sulfonic and carboxylic acid (PFESA and PFECA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS). Overall, this review systematically elucidated the adverse cardiovascular (CV) effects of legacy and emerging PFAS, emphasized the dose/concentration-dependent, time-dependent, carbon chain length-dependent, sex-specific, and coexposure effects, and discussed the underlying mechanisms and possible prevention and treatment. Extensive epidemiological and laboratory evidence suggests that accumulated serum levels of legacy PFAS possibly contribute to an increased risk of CVD and its subclinical course, such as cardiac toxicity, vascular disorder, hypertension, and dyslipidemia. The underlying biological mechanisms may include oxidative stress, signaling pathway disturbance, lipid metabolism disturbance, and so on. Various emerging alternatives to PFAS also play increasingly prominent toxic roles in CV outcomes that are milder, similar to, or more severe than legacy PFAS. Future research is recommended to conduct more in-depth CV toxicity assessments of legacy and emerging PFAS and explore more effective surveillance, prevention, and treatment strategies, accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

AHR:

Aryl hydrocarbon receptor

AGTR1:

Angiotensin II receptor 1

BA:

Bulbus arteriosus

BBB:

Blood brain barrier

BMP2:

Bone morphogenetic protein 2

BP:

Blood pressure

BPA:

Bisphenol A

BTB:

Blood–testis barrier

CAD:

Coronary artery disease

CD36:

Cluster of differentiation 36

CHD:

Congenital heart disease

CIMT:

Common carotid artery intima–media thickness

Cnx-43:

Connexin-43

CV:

Cardiovascular

CVD:

Cardiovascular disease

DBP:

Diastolic blood pressure

DA:

Dorsal aorta

DLAV:

Dorsal longitudinal anastomotic vessel

dpf:

Days postfertilization

ED:

Embryonic day

EMPs:

Endothelial microparticles

ESC-CMs:

Embryonic stem cell-derived cardiomyocytes

FAs:

Fatty acids

FTCA:

Fluorotelomer carboxylic acids

GD:

Gestation day

GJ:

Gap junction

HBMECs:

Human brain microvascular endothelial cells

HDL-C:

High-density lipoprotein cholesterol

HFPO-DA (GenX):

Hexafluoropropylene oxide dimer acid

HK:

High-molecular-weight kininogen

HMVECs:

Human microvascular endothelial cells

HRECs:

Human retinal endothelial cells

HUVECs:

Human umbilical vein endothelial cells

ICaL:

L-type Ca2+ current

iNOS:

Inducible nitric oxide synthase

ISV:

Intersegmental vessel

KKS:

Kallikrein–kinin system

LC:

L-Carnitine

LC50 :

50% Lethal concentrations

LDL-C:

Low-density lipoprotein cholesterol

LV:

Left ventricular

MAM:

Mitochondria-associated endoplasmic reticulum membrane

MePOSAA:

2-(N-methyl-perfluorooctane sulfonamido) acetate

MMP9:

Matrix metalloproteinase 9

NHANES:

National health and nutrition examination survey

NF-κB:

Nuclear factor κ-light chain-enhancer of activated B cells

OBS:

Sodium p-perfluorous nonenoxybenzene sulfonate

OxPC:

Oxidized phosphatidylcholine

OxPL:

Oxidized phospholipids

PCB:

Polychlorinated biphenyl

PCV:

Posterior cardinal vein

PFAS:

Per- and polyfluoroalkyl substances

PFDA:

Perfluorodecanoic acid

PFDoA:

Perfluorododecanoic acid

PFHpS:

Perfluoroheptanoic acid

PFHxS:

Perfluorohexanesulfonic acid

PFNA:

Perfluorononanoic acid

PFOA:

Perfluorooctanoic acid

PFOS:

Perfluorooctane sulfonic acid

PFOSA:

Perfluorooctane sulfonamide

PFUnDA:

Perfluoroundecanoic acid

PIVUS:

Prospective Investigation of the Vasculature in Uppsala Seniors

PMPs:

Platelet microparticles

PPAR:

Peroxisome proliferator-activated receptor

PPK:

Plasma prekallikrein

PVD:

Peripheral vascular disease

ROS:

Reactive oxygen species

RV:

Right ventricular

SBP:

Systolic blood pressure

STAT5B:

Signal transducer and activator of transcription 5B

SV:

Sinus venosus

TC:

Total cholesterol

TET:

Translocation methylcytosine dioxygenases

TG:

Triglyceride

TJ:

Tight junction

VEGFR2:

Vascular endothelial growth factor receptor 2

VLDL-C:

Very-low-density lipoprotein cholesterol

6:2 Cl-PFESA (F-53B):

6:2 Polyfluoroether sulfonate chloride

ΔΨm:

Mitochondrial membrane potential

References

  • Andersen ME, Hagenbuch B, Apte U, Corton JC, Fletcher T, Lau C et al (2021) Why is elevation of serum cholesterol associated with exposure to perfluoroalkyl substances (PFAS) in humans? A workshop report on potential mechanisms. Toxicology 459:152845

    CAS  PubMed  Google Scholar 

  • Anderson-Mahoney P, Kotlerman J, Takhar H, Gray D, Dahlgren J (2008) Self-reported health effects among community residents exposed to perfluorooctanoate. New Solut 18:129–143

    PubMed  Google Scholar 

  • Averina M, Brox J, Huber S, Furberg AS (2021a) Exposure to perfluoroalkyl substances (pfas) and dyslipidemia, hypertension and obesity in adolescents. The fit futures study. Environ Res 195:110740

    CAS  PubMed  Google Scholar 

  • Bangma J, Eaves LA, Oldenburg K, Reiner JL, Manuck T, Fry RC (2020) Identifying risk factors for levels of per- and polyfluoroalkyl substances (PFAS) in the placenta in a high-risk pregnancy cohort in North Carolina. Environ Sci Technol 54:8158–8166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao WW, Qian ZM, Geiger SD, Liu E, Liu Y, Wang SQ, Lawrence WR, Yang BY, Hu LW, Zeng XW, Dong GH (2017) Gender-specific associations between serum isomers of perfluoroalkyl substances and blood pressure among Chinese: isomers of C8 health project in China. Sci Total Environ 607–608:1304–1312

    PubMed  Google Scholar 

  • Behr AC, Plinsch C, Braeuning A, Buhrke T (2020) Activation of human nuclear receptors by perfluoroalkylated substances (pfas). Toxicol Invitro 62:104700

    Google Scholar 

  • Bhatnagar A (2017) Environmental determinants of cardiovascular disease. Circ Res 121:162–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blake BE, Fenton SE (2020) Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: a review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology 443:152565

    CAS  PubMed  Google Scholar 

  • Birukov A, Andersen LB, Andersen MS, Nielsen JH, Nielsen F, Kyhl HB, Jorgensen JS, Grandjean P, Dechend R, Jensen TK (2021) Exposure to perfluoroalkyl substances and blood pressure in pregnancy among 1436 women from the odense child cohort. Environ Int 151:106442

    CAS  PubMed  Google Scholar 

  • Bijland S, Rensen PC, Pieterman EJ, Maas AC, van der Hoorn JW, van Erk MJ et al (2011) Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-leiden CETP mice. Toxicol Sci 123:290–303

    CAS  PubMed  Google Scholar 

  • Bjorke-Monsen AL, Varsi K, Averina M, Brox J, Huber S (2020) Perfluoroalkyl substances (PFASs) and mercury in never-pregnant women of fertile age: association with fish consumption and unfavorable lipid profile. BMJ Nutr Prev Health 3:277–284

    PubMed  PubMed Central  Google Scholar 

  • Björvang RD, Vinnars MT, Papadogiannakis N, Gidlöf S, Mamsen LS, Mucs D, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH, Andersen CY, Damdimopoulou P (2021) Mixtures of persistent organic pollutants are found in vital organs of late gestation human fetuses. Chemosphere 283:131125

    PubMed  Google Scholar 

  • Blomberg AJ, Shih YH, Messerlian C, Jørgensen LH, Weihe P, Grandjean P (2021) Early-life associations between per- and polyfluoroalkyl substances and serum lipids in a longitudinal birth cohort. Environ Res 200:111400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borghese MM, Walker M, Helewa ME, Fraser WD, Arbuckle TE (2020) Association of perfluoroalkyl substances with gestational hypertension and preeclampsia in the MIREC study. Environ Int 141:105789

    CAS  PubMed  Google Scholar 

  • Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z et al (2022a) Toward a mechanistic understanding of poly- and perfluoroalkylated substances and cancer. Cancers 14:2919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom SI, Islam MT, Lesniewski LA, Donato AJ (2022) Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol 20(1):38–51

    PubMed  Google Scholar 

  • Brase RA, Mullin EJ, Spink DC (2021b) Legacy and emerging per- and polyfluoroalkyl substances: analytical techniques, environmental fate, and health effects. Int J Mol Sci 22(3):995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brette F, Shiels HA, Galli GL, Cros C, Incardona JP, Scholz NL et al (2017) A novel cardiotoxic mechanism for a pervasive global pollutant. Sci Rep 7:41476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Briels N, Ciesielski TM, Herzke D, Jaspers VLB (2018) Developmental toxicity of perfluorooctanesulfonate (pfos) and its chlorinated polyfluoroalkyl ether sulfonate alternative f-53b in the domestic chicken. Environ Sci Technol 52:12859–12867

    CAS  PubMed  Google Scholar 

  • Canova C, Barbieri G, Zare Jeddi M, Gion M, Fabricio A, Daprà F, Russo F, Fletcher T, Pitter G (2020) Associations between perfluoroalkyl substances and lipid profile in a highly exposed young adult population in the Veneto Region. Environ Int 145:106117

    CAS  PubMed  Google Scholar 

  • CDC (2017) (Centers for Disease Control and Prevention) Fourth national report on human exposure to environmental chemicals, 2009. Updated Tables, January 2017. https://www.cdc.gov/exposurereport/index.html.

  • Cerna M, Grafnetterova AP, Dvorakova D, Pulkrabova J, Maly M, Janos T et al (2020) Biomonitoring of pfoa, pfos and pfna in human milk from Czech republic, time trends and estimation of infant’s daily intake. Environ Res 188:109763

    CAS  PubMed  Google Scholar 

  • Chang S, Allen BC, Andres KL, Ehresman DJ, Falvo R, Provencher A, Olsen GW, Butenhoff JL (2017) Evaluation of serum lipid, thyroid, and hepatic clinical chemistries in association with serum perfluorooctanesulfonate (pfos) in cynomolgus monkeys after oral dosing with potassium pfos. Toxicol Sci 156:387–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell GA, Thompson CM, Wolf JC, Cullen JM, Klaunig JE, Haws LC (2020) Assessment of the mode of action underlying the effects of genx in mouse liver and implications for assessing human health risks. Toxicol Pathol 48:494–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Qiu W, Yang X, Chen F, Chen J, Tang L, Zhong H, Magnuson JT, Zheng C, Xu EG (2022) Perfluorooctane sulfonamide (PFOSA) induces cardiotoxicity via aryl hydrocarbon receptor activation in zebrafish. Environ Sci Technol. https://doi.org/10.1021/acs.est.1c08875

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Yu Z, Feng L, Wang Y (2013) Perfluorooctane sulfonate (PFOS) induced embryotoxicity and disruption of cardiogenesis. Toxicol in Vitro 27:1503–1512

    CAS  PubMed  Google Scholar 

  • Christensen KY, Raymond M, Thompson BA, Anderson HA (2016) Perfluoroalkyl substances in older male anglers in Wisconsin. Environ Int 91:312–318

    CAS  PubMed  Google Scholar 

  • Christensen KY, Raymond M, Meiman J (2019) Perfluoroalkyl substances and metabolic syndrome. Int J Hyg Environ Health 222:147–153

    CAS  PubMed  Google Scholar 

  • Cong J, Chu C, Li QQ, Zhou Y, Min QZ, Dee GS, Vaughn MG, Zeng XW, Liu RQ, Hu LW, Yang BY, Chen G, Zeeshan M, Sun X, Xiang M, Dong GH (2021) Associations of perfluorooctane sulfonate alternatives and serum lipids in Chinese adults. Environ Int 155:106596

    CAS  PubMed  Google Scholar 

  • Conley JM, Lambright CS, Evans N, Strynar MJ, McCord J, McIntyre BS, Travlos GS, Cardon MC, Medlock-Kakaley E, Hartig PC, Wilson VS, Gray LE Jr (2019) Adverse maternal, fetal, and postnatal effects of hexafluoropropylene oxide dimer acid (genx) from oral gestational exposure in sprague-dawley rats. Environ Health Perspect 127:37008

    PubMed  Google Scholar 

  • Conley JM, Lambright CS, Evans N, McCord J, Strynar MJ, Hill D, Medlock-Kakaley E, Wilson VS, Gray LE Jr (2021) Hexafluoropropylene oxide-dimer acid (hfpo-da or genx) alters maternal and fetal glucose and lipid metabolism and produces neonatal mortality, low birthweight, and hepatomegaly in the sprague-dawley rat. Environ Int 146:106204

    CAS  PubMed  Google Scholar 

  • Cosselman KE, Navas-Acien A, Kaufman JD (2015) Environmental factors in cardiovascular disease. Nat Rev Cardiol 12:627–642

    CAS  PubMed  Google Scholar 

  • Cousins IT, DeWitt JC, Glüge J, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, Scheringer M, Vierke L, Wang Z (2020) Strategies for grouping per- and polyfluoroalkyl substances (pfas) to protect human and environmental health. Environ Sci Process Impacts 22:1444–1460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB (2009) Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol 56:338–349

    CAS  PubMed  Google Scholar 

  • Curran I, Hierlihy SL, Liston V, Pantazopoulos P, Nunnikhoven A, Tittlemier S, Barker M, Trick K, Bondy G (2008) Altered fatty acid homeostasis and related toxicologic sequelae in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). J Toxicol Environ Health A 71:1526–1541

    CAS  PubMed  Google Scholar 

  • Dagenais GR, Leong DP, Rangarajan S, Lanas F, Lopez-Jaramillo P, Gupta R, Diaz R, Avezum A, Oliveira GBF, Wielgosz A et al (2020) Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet 395:785–794

    PubMed  Google Scholar 

  • Dale K, Yadetie F, Müller MB, Pampanin DM, Gilabert A, Zhang X, Tairova Z, Haarr A, Lille-Langøy R, Lyche JL, Porte C, Karlsen OA, Goksøyr A (2020) Proteomics and lipidomics analyses reveal modulation of lipid metabolism by perfluoroalkyl substances in liver of atlantic cod (gadus morhua). Aquat Toxicol 227:105590

    CAS  PubMed  Google Scholar 

  • Dalla ZT, Savitz DA, Barbieri G, Pitter G, Zare JM, Daprà F, Fabricio ASC, Russo F, Fletcher T, Canova C (2021) The association between perfluoroalkyl substances and lipid profile in exposed pregnant women in the Veneto region Italy. Ecotoxicol Environ Saf 209:111805

    Google Scholar 

  • Dangudubiyyam SV, Mishra JS, Song R, Kumar S (2022) Maternal PFOS exposure during rat pregnancy causes hypersensitivity to angiotensin II and attenuation of endothelium-dependent vasodilation in the uterine arteries. Biol Reprod. https://doi.org/10.1093/biolre/ioac141

    Article  PubMed  Google Scholar 

  • Dangudubiyyam SV, Mishra JS, Zhao H, Kumar S (2020) Perfluorooctane sulfonic acid (PFOS) exposure during pregnancy increases blood pressure and impairs vascular relaxation mechanisms in the adult offspring. Reprod Toxicol 98:165–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidsen N, Rosenmai AK, Lauschke K, Svingen T, Vinggaard AM (2021) Developmental effects of pfos, pfoa and genx in a 3d human induced pluripotent stem cell differentiation model. Chemosphere 279:130624

    CAS  PubMed  Google Scholar 

  • de Toni L, Radu CM, Sabovic I, Di Nisio A, Dall’Acqua S, Guidolin D, Dall’Acqua S, Acquasaliente L, Pozzi N, Plebani M, Garolla A, Foresta C (2020) Increased cardiovascular risk associated with chemical sensitivity to perfluoro-octanoic acid: role of impaired platelet aggregation. Int J Mol Sci 21:399

    PubMed  PubMed Central  Google Scholar 

  • Deng P, Wang C, Wahlang B, Sexton T, Morris AJ, Hennig B (2020) Co-exposure to PCB126 and PFOS increases biomarkers associated with cardiovascular disease risk and liver injury in mice. Toxicol Appl Pharmacol 409:115301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickman RA, Aga DS (2022) A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (pfas). J Hazard Mater 436:129120

    CAS  PubMed  Google Scholar 

  • Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31:27–33

    CAS  PubMed  Google Scholar 

  • Ding N, Karvonen-Gutierrez CA, Mukherjee B, Calafat AM, Harlow SD, Park SK (2022) Per- and polyfluoroalkyl substances and incident hypertension in multi-racial/ethnic women: The study of women’s health across the nation. Hypertension 79(8):1876–1886

    CAS  PubMed  Google Scholar 

  • Donat-Vargas C, Bergdahl IA, Tornevi A, Wennberg M, Sommar J, Koponen J, Kiviranta H, Åkesson A (2019) Associations between repeated measure of plasma perfluoroalkyl substances and cardiometabolic risk factors. Environ Int 124:58–65

    CAS  PubMed  Google Scholar 

  • Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J (2019a) Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 136:27–41

    CAS  PubMed  Google Scholar 

  • Dong Z, Wang H, Yu YY, Li YB, Naidu R, Liu Y (2019b) Using 2003–2014 U.S. Nhanes data to determine the associations between per- and polyfluoroalkyl substances and cholesterol: trend and implications. Ecotoxicol Environ Saf 173:461–468

    CAS  PubMed  Google Scholar 

  • ECHA (2016) Commission regulation (EU) 2016/26 of 13 Jan 2016 amending annex XVII to regulation (EC) No 1907/2006 of the European parliament and of the council concerning the registration, evaluation, authorisation and restriction of chemicals (REACH) as regards nonylphenol ethoxylates. Focus Surf 2016(3):5–6. https://doi.org/10.1016/j.fos.2016.03.026

    Article  Google Scholar 

  • El-Tantawy WH, Temraz A (2019) Natural products for controlling hyperlipidemia: review. Arch Physiol Biochem 125:128–135

    CAS  PubMed  Google Scholar 

  • Erinc A, Davis MB, Padmanabhan V, Langen E, Goodrich JM (2021) Considering environmental exposures to per- and polyfluoroalkyl substances (pfas) as risk factors for hypertensive disorders of pregnancy. Environ Res 197:111113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fair PA, Wolf B, White ND, Arnott SA, Kannan K, Karthikraj R, Vena JE (2019) Perfluoroalkyl substances (pfass) in edible fish species from Charleston harbor and tributaries, South Carolina, United States: exposure and risk assessment. Environ Res 171:266–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Long G, Zeng G, Zhang Q, Song B, Wu KH (2022) Association of increased risk of cardiovascular diseases with higher levels of perfluoroalkylated substances in the serum of adults. Environ Sci Pollut Res Int 29(59):89081–89092

    CAS  PubMed  Google Scholar 

  • Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM (2021) Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem 40:606–630

    CAS  PubMed  Google Scholar 

  • Fletcher T, Galloway TS, Melzer D, Holcroft P, Cipelli R, Pilling LC, Mondal D, Luster M, Harries LW (2013) Associations between pfoa, pfos and changes in the expression of genes involved in cholesterol metabolism in humans. Environ Int 57–58:2–10

    PubMed  Google Scholar 

  • Fiedler H, Kennedy T, Henry BJ (2021) A critical review of a recommended analytical and classification approach for organic fluorinated compounds with an emphasis on per- and polyfluoroalkyl substances. Integr Environ Assess Manag 17:331–351

    CAS  PubMed  Google Scholar 

  • Forsthuber M, Widhalm R, Granitzer S, Kaiser AM, Moshammer H, Hengstschläger M, Dolznig H, Gundacker C (2022) Perfluorooctane sulfonic acid (PFOS) inhibits vessel formation in a human 3D co-culture angiogenesis model (NCFs/HUVECs). Environ Pollut 293:118543

    CAS  PubMed  Google Scholar 

  • Fragki S, Dirven H, Fletcher T, Grasl-Kraupp B, Bjerve Gützkow K, Hoogenboom R, Kersten S, Lindeman B, Louisse J, Peijnenburg A, Piersma AH, Princen HMG, Uhl M, Westerhout J, Zeilmaker MJ, Luijten M (2021) Systemic pfos and pfoa exposure and disturbed lipid homeostasis in humans: what do we know and what not? Crit Rev Toxicol 51:141–164

    CAS  PubMed  Google Scholar 

  • Frigerio G, Cafagna S, Polledri E, Mercadante R, Fustinoni S (2022) Development and validation of an lc-ms/ms method for the quantitation of 30 legacy and emerging per- and polyfluoroalkyl substances (pfass) in human plasma, including hfpo-da, dona, and cc6o4. Anal Bioanal Chem 414:1259–1278

    CAS  PubMed  Google Scholar 

  • Fu J, Gao Y, Cui L, Wang T, Liang Y, Qu G, Yuan B, Wang Y, Zhang A, Jiang G (2016) Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (pfaas) in occupational workers in china. Sci Rep 6:38039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs FD, Whelton PK (2020) High blood pressure and cardiovascular disease. Hypertension 75:285–292

    CAS  PubMed  Google Scholar 

  • Gardener H, Sun Q, Grandjean P (2021) Pfas concentration during pregnancy in relation to cardiometabolic health and birth outcomes. Environ Res 192:110287

    CAS  PubMed  Google Scholar 

  • Geiger SD, Xiao J, Ducatman A, Frisbee S, Innes K, Shankar A (2014a) The association between PFOA, PFOS and serum lipid levels in adolescents. Chemosphere 98:78–83

    CAS  PubMed  Google Scholar 

  • Geiger SD, Xiao J, Shankar A (2014b) No association between perfluoroalkyl chemicals and hypertension in children. Integr Blood Press Control 7:1–7

    PubMed  PubMed Central  Google Scholar 

  • Geiger SD, Yao P, Vaughn MG, Qian Z (2021) PFAS exposure and overweight/obesity among children in a nationally representative sample. Chemosphere 268:128852

    CAS  PubMed  Google Scholar 

  • Göckener B, Weber T, Rüdel H, Bücking M, Kolossa-Gehring M (2020) Human biomonitoring of per- and polyfluoroalkyl substances in German blood plasma samples from 1982 to 2019. Environ Int 145:106123

    PubMed  Google Scholar 

  • Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC, Touyz RM (2021) Oxidative stress and hypertension. Circ Res 128:993–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Cornelissen A, Sakamoto A, Finn AV (2020) Making novel genetic associations with carotid intima-media thickness using the UK biobank. Arterioscler Thromb Vasc Biol 40:297–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenaars A, Vergauwen L, De Coen W, Knapen D (2011) Structure-activity relationship assessment of four perfluorinated chemicals using a prolonged zebrafish early life stage test. Chemosphere 82:764–772

    CAS  PubMed  Google Scholar 

  • Hamid S, Rhaleb IA, Kassem KM, Rhaleb NE (2020) Role of kinins in hypertension and heart failure. Pharmaceuticals (basel) 13:347

    CAS  PubMed  Google Scholar 

  • Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S (2017) PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol 13:259–278

    CAS  PubMed  Google Scholar 

  • Han X, Meng L, Zhang G, Li Y, Shi Y, Zhang Q, Jiang G (2021) Exposure to novel and legacy per- and polyfluoroalkyl substances (pfass) and associations with type 2 diabetes: a case-control study in east China. Environ Int 156:106637

    CAS  PubMed  Google Scholar 

  • Harada K, Xu F, Ono K, Iijima T, Koizumi A (2005) Effects of PFOS and PFOA on L-type Ca2+currents in guinea-pig ventricular myocytes. Biochem Biophys Res Commun 329:487–494

    CAS  PubMed  Google Scholar 

  • He Y, Lv D, Li C, Liu X, Liu W, Han W (2022) Human exposure to f-53b in china and the evaluation of its potential toxicity: an overview. Environ Int 161:107108

    CAS  PubMed  Google Scholar 

  • Honda-Kohmo K, Hutcheson R, Innes KE, Conway BN (2019) Perfluoroalkyl substances are inversely associated with coronary heart disease in adults with diabetes. J Diabetes Complicat 33:407–412

    Google Scholar 

  • Huang H, Huang C, Wang L, Ye X, Bai C, Simonich MT, Tanguay RL, Dong Q (2010) Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (pfos). Aquat Toxicol 98:139–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Sun L, Mennigen JA, Liu Y, Liu S, Zhang M, Wang Q, Tu W (2020) Developmental toxicity of the novel PFOS alternative OBS in developing zebrafish: an emphasis on cilia disruption. J Hazard Mater 409:124491

    PubMed  Google Scholar 

  • Huang M, Jiao J, Zhuang P, Chen X, Wang J, Zhang Y (2018) Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environ Int 119:37–46

    CAS  PubMed  Google Scholar 

  • Huang Q, Fang C, Wu X, Fan J, Dong S (2011) Perfluorooctane sulfonate impairs the cardiac development of a marine medaka (Oryzias melastigma). Aquat Toxicol 105:71–77

    CAS  PubMed  Google Scholar 

  • Huang R, Chen Q, Zhang L, Luo K, Chen L, Zhao S, Feng L, Zhang J (2019) Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and the risk of hypertensive disorders of pregnancy. Environ Health 18:5

    PubMed  PubMed Central  Google Scholar 

  • Hutcheson R, Innes K, Conway B (2020) Perfluoroalkyl substances and likelihood of stroke in persons with and without diabetes. Diabetes Vasc Dis Res 17:1476–2069

    Google Scholar 

  • Infante T, Costa D, Napoli C (2021) Novel insights regarding nitric oxide and cardiovascular diseases. Angiology 72:411–425

    CAS  PubMed  Google Scholar 

  • Jacobsen AV, Nordén M, Engwall M, Scherbak N (2018) Effects of perfluorooctane sulfonate on genes controlling hepatic fatty acid metabolism in livers of chicken embryos. Environ Sci Pollut Res Int 25:23074–23081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RB, Ducatman A (2021) Associations between apolipoprotein B and selected perfluoroalkyl substances among diabetics and nondiabetics. Environ Sci Pollut Res Int 28:13819–13828

    CAS  PubMed  Google Scholar 

  • Jiang Q, Lust RM, Strynar MJ, Dagnino S, DeWitt JC (2012) Perflurooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings. Toxicology 293:97–106

    CAS  PubMed  Google Scholar 

  • Jiang Q, Lust RM, DeWitt JC (2013) Perfluorooctanoic acid induced-developmental cardiotoxicity: are peroxisome proliferator activated receptor α (PPARα) and bone morphorgenic protein 2 (BMP2) pathways involved? J Toxicol Environ Health A 76:635–650

    CAS  PubMed  Google Scholar 

  • Jiang Q, Ma W, Wu J, Wingard CJ, DeWitt JC (2016a) Perfluorooctanoic acid-induced toxicity in primary cultures of chicken embryo cardiomyocytes. Environ Toxicol 31:1580–1590

    CAS  PubMed  Google Scholar 

  • Jiang Q, Wang C, Xue C, Xue L, Wang M, Li C, Deng Z, Wang Q (2016b) Changes in the levels of l-carnitine, acetyl-l-carnitine and propionyl-l-carnitine are involved in perfluorooctanoic acid induced developmental cardiotoxicity in chicken embryo. Environ Toxicol Pharmacol 48:116–124

    CAS  PubMed  Google Scholar 

  • Kang H, Lee HK, Moon HB, Kim S, Lee J, Ha M, Hong S, Kim S, Choi K (2018) Perfluoroalkyl acids in serum of Korean children: occurrences, related sources, and associated health outcomes. Sci Total Environ 645:958–965

    CAS  PubMed  Google Scholar 

  • Khalil N, Ebert JR, Honda M, Lee M, Nahhas RW, Koskela A, Hangartner T, Kannan K (2018) Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8–12 year old children: a pilot study. Environ Res 160:314–321

    CAS  PubMed  Google Scholar 

  • Kheila M, Gorjipour F, Hosseini Gohari L, Sharifi M, Aboutaleb N (2021) Human mesenchymal stem cells derived from amniotic membrane attenuate isoproterenol (iso)-induced myocardial injury by targeting apoptosis. Med J Islam Repub Iran 35:82

    PubMed  PubMed Central  Google Scholar 

  • Kirk AB, Michelsen-Correa S, Rosen C, Martin CF, Blumberg B (2021) Pfas and potential adverse effects on bone and adipose tissue through interactions with pparγ. Endocrinology. https://doi.org/10.1210/endocr/bqab194

    Article  PubMed  PubMed Central  Google Scholar 

  • Kishi R, Nakajima T, Goudarzi H, Kobayashi S, Sasaki S, Okada E et al (2015) The association of prenatal exposure to perfluorinated chemicals with maternal essential and long-chain polyunsaturated fatty acids during pregnancy and the birth weight of their offspring: the Hokkaido study. Environ Health Perspect 123:1038–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Sata F, Goudarzi H, Araki A, Miyashita C, Sasaki S, Okada E, Iwasaki Y, Nakajima T, Kishi R (2021) Associations among perfluorooctanesulfonic/perfluorooctanoic acid levels, nuclear receptor gene polymorphisms, and lipid levels in pregnant women in the hokkaido study. Sci Rep 11:9994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langenbach B, Wilson M (2021c) Per- and polyfluoroalkyl substances (pfas): significance and considerations within the regulatory framework of the USA. Int J Environ Res Public Health 18:11142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leow MK (2015) Environmental origins of hypertension: phylogeny, ontogeny and epigenetics. Hypertens Res 38:299–307

    PubMed  Google Scholar 

  • Li CH, Ren XM, Ruan T, Cao LY, Xin Y, Guo LH, Jiang G (2018) Chlorinated polyfluorinated ether sulfonates exhibit higher activity toward peroxisome proliferator-activated receptors signaling pathways than perfluorooctanesulfonate. Environ Sci Technol 52:3232–3239

    CAS  PubMed  Google Scholar 

  • Li N, Liu Y, Papandonatos GD, Calafat AM, Eaton CB, Kelsey KT, Cecil KM, Kalkwarf HJ, Yolton K, Lanphear BP, Chen A, Braun JM (2021a) Gestational and childhood exposure to per- and polyfluoroalkyl substances and cardiometabolic risk at age 12 years. Environ Int 147:106344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Lu X, Yu N, Li A, Zhuang T, Du L, Tang S, Shi W, Yu H, Song M, Wei S (2021b) Exposure to legacy and novel perfluoroalkyl substance disturbs the metabolic homeostasis in pregnant women and fetuses: a metabolome-wide association study. Environ Int 156:106627

    CAS  PubMed  Google Scholar 

  • Liang R, He J, Shi Y, Li Z, Sarvajayakesavalu S, Baninla Y, Guo F, Chen J, Xu X, Lu Y (2017) Effects of perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna. Chemosphere 168:1613–1618

    CAS  PubMed  Google Scholar 

  • Liao Y, Wang J, Huang QS, Fang C, Kiyama R, Shen H, Dong S (2012) Evaluation of cellular response to perfluorooctane sulfonate in human umbilical vein endothelial cells. Toxicol Invitro 26:421–428

    CAS  Google Scholar 

  • Liao S, Yao W, Cheang I, Tang X, Yin T, Lu X, Zhou Y, Zhang H, Li X (2020) Association between perfluoroalkyl acids and the prevalence of hypertension among us adults. Ecotoxicol Environ Saf 196:110589

    CAS  PubMed  Google Scholar 

  • Lin CY, Lin LY, Wen TW, Lien GW, Chien KL, Hsu SH, Liao CC, Sung FC, Chen PC, Su TC (2013) Association between levels of serum perfluorooctane sulfate and carotid artery intima-media thickness in adolescents and young adults. Int J Cardiol 168:3309–3316

    PubMed  Google Scholar 

  • Lin CY, Chen PC, Lo SC, Torng PL, Sung FC, Su TC (2016) The association of carotid intima-media thickness with serum level of perfluorinated chemicals and endothelium-platelet microparticles in adolescents and young adults. Environ Int 94:292–299

    CAS  PubMed  Google Scholar 

  • Lin CY, Lee HL, Hwang YT, Su TC (2020a) The association between total serum isomers of per- and polyfluoroalkyl substances, lipid profiles, and the DNA oxidative/nitrative stress biomarkers in middle-aged Taiwanese adults. Environ Res 182:109064

    CAS  PubMed  Google Scholar 

  • Lin PD, Cardenas A, Hauser R, Gold DR, Kleinman KP, Hivert MF, Calafat AM, Webster TF, Horton ES, Oken E (2020b) Per- and polyfluoroalkyl substances and blood pressure in pre-diabetic adults-cross-sectional and longitudinal analyses of the diabetes prevention program outcomes study. Environ Int 137:105573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CY, Lee HL, Chen CW, Wang C, Sung FC, Su TC (2022) Global DNA methylation mediates the association between serum perfluorooctane sulfonate and carotid intima-media thickness in young and middle-aged taiwanese populations. Ecotoxicol Environ Saf 241:113782

    CAS  PubMed  Google Scholar 

  • Lind PM, Lind L (2020) Are persistent organic pollutants linked to lipid abnormalities, atherosclerosis and cardiovascular disease? A review. J Lipid Atheroscler 9:334–348

    PubMed  PubMed Central  Google Scholar 

  • Lind PM, Salihovic S, van Bavel B, Lind L (2017) Circulating levels of perfluoroalkyl substances (PFASs) and carotid artery atherosclerosis. Environ Res 152:157–164

    CAS  PubMed  Google Scholar 

  • Lind PM, Salihovic S, Stubleski J, Kärrman A, Lind L (2018) Changes in plasma levels of perfluoroalkyl substances (PFASs) are related to increase in carotid intima-media thickness over 10 years - a longitudinal study. Environ Health 17:59

    PubMed  PubMed Central  Google Scholar 

  • Lind PM, Lind L, Salihovic S, Ahlström H, Michaelsson K, Kullberg J, Strand R (2022) Serum levels of perfluoroalkyl substances (pfas) and body composition - a cross-sectional study in a middle-aged population. Environ Res 209:112677

    CAS  PubMed  Google Scholar 

  • Linglart L, Bonnet D (2022) Epigenetics and congenital heart diseases. J Cardiovasc Dev Dis 9:185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu QS, Sun Y, Qu G, Long Y, Zhao X, Zhang A, Zhou Q, Hu L, Jiang G (2017) Structure-dependent hematological effects of per- and polyfluoroalkyl substances on activation of plasma kallikrein–kinin system cascade. Environ Sci Technol 51:10173–10183

    CAS  PubMed  Google Scholar 

  • Liu QS, Hao F, Sun Z, Long Y, Zhou Q, Jiang G (2018) Perfluorohexadecanoic acid increases paracellular permeability in endothelial cells through the activation of plasma kallikrein-kinin system. Chemosphere 190:191–200

    CAS  PubMed  Google Scholar 

  • Liu D, Liu NY, Chen LT, Shao Y, Shi XM, Zhu DY (2020a) Perfluorooctane sulfonate induced toxicity in embryonic stem cell-derived cardiomyocytes via inhibiting autophagy-lysosome pathway. Toxicol Invitro 69:104988

    CAS  Google Scholar 

  • Liu G, Zhang B, Hu Y, Rood J, Liang L, Qi L, Bray GA, DeJonge L, Coull B, Grandjean P, Furtado JD, Sun Q (2020b) Associations of perfluoroalkyl substances with blood lipids and apolipoproteins in lipoprotein subspecies: the POUNDS-lost study. Environ Health 19:5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Gao X, Wang Y, Leng J, Li J, Zhao Y, Wu Y (2021) Profiling of emerging and legacy per-/polyfluoroalkyl substances in serum among pregnant women in china. Environ Pollut 271:116376

    CAS  PubMed  Google Scholar 

  • Liu JJ, Cui XX, Tan YW, Dong PX, Ou YQ, Li QQ, Chu C, Wu LY, Liang LX, Qin SJ, Zeeshan M, Zhou Y, Hu LW, Liu RQ, Zeng XW, Dong GH, Zhao XM (2022) Per- and perfluoroalkyl substances alternatives, mixtures and liver function in adults: a community-based population study in china. Environ Int 163:107179

    CAS  PubMed  Google Scholar 

  • Louisse J, Rijkers D, Stoopen G, Janssen A, Staats M, Hoogenboom R, Kersten S, Peijnenburg A (2020) Perfluorooctanoic acid (pfoa), perfluorooctane sulfonic acid (pfos), and perfluorononanoic acid (pfna) increase triglyceride levels and decrease cholesterogenic gene expression in human heparg liver cells. Arch Toxicol 94:3137–3155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovren F, Verma S (2013) Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clin Chem 59:1166–1174

    CAS  PubMed  Google Scholar 

  • Lv Z, Li G, Li Y, Ying C, Chen J, Chen T, Wei J, Lin Y, Jiang Y, Wang Y, Shu B, Xu B, Xu S (2013) Glucose and lipid homeostasis in adult rat is impaired by early-life exposure to perfluorooctane sulfonate. Environ Toxicol 28:532–542

    CAS  PubMed  Google Scholar 

  • Lv N, Zhao M, Han Y, Cui L, Zhong W, Wang C, Jiang Q (2018) The roles of bone morphogenetic protein 2 in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection. Toxicol Appl Pharmacol 352:68–76

    CAS  PubMed  Google Scholar 

  • Lv N, Yuan J, Ji A, Shi L, Gao M, Cui L, Jiang Q (2019) Perfluorooctanoic acid-induced toxicities in chicken embryo primary cardiomyocytes: roles of PPAR alpha and Wnt5a/Frizzled2. Toxicol Appl Pharmacol 381:114716

    CAS  PubMed  Google Scholar 

  • Ma S, Xu C, Ma J, Wang Z, Zhang Y, Shu Y, Mo X (2019) Association between perfluoroalkyl substance concentrations and blood pressure in adolescents. Environ Pollut 254:112971

    CAS  PubMed  Google Scholar 

  • Mamsen LS, Björvang RD, Mucs D, Vinnars MT, Papadogiannakis N, Lindh CH, Andersen CY, Damdimopoulou P (2019) Concentrations of perfluoroalkyl substances (pfass) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ Int 124:482–492

    CAS  PubMed  Google Scholar 

  • Manzano-Salgado CB, Casas M, Lopez-Espinosa MJ, Ballester F, Iñiguez C, Martinez D, Romaguera D, Fernández-Barrés S, Santa-Marina L, Basterretxea M, Schettgen T, Valvi D, Vioque J, Sunyer J, Vrijheid M (2017) Prenatal exposure to perfluoroalkyl substances and cardiometabolic risk in children from the spanish inma birth cohort study. Environ Health Perspect 125:097018

    PubMed  PubMed Central  Google Scholar 

  • Margolis R, Sant KE (2021) Associations between exposures to perfluoroalkyl substances and diabetes, hyperglycemia, or insulin resistance: a scoping review. J Xenobiot 11:115–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marques E, Pfohl M, Auclair A, Jamwal R, Barlock BJ, Sammoura FM, Goedken M, Akhlaghi F, Slitt AL (2020) Perfluorooctanesulfonic acid (PFOS) administration shifts the hepatic proteome and augments dietary outcomes related to hepatic steatosis in mice. Toxicol Appl Pharmacol 408:115250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattsson K, Rignell-Hydbom A, Holmberg S, Thelin A, Jönsson BA, Lindh CH, Sehlstedt A, Rylander L (2015) Levels of perfluoroalkyl substances and risk of coronary heart disease: findings from a population-based longitudinal study. Environ Res 142:148–154

    CAS  PubMed  Google Scholar 

  • Meneguzzi A, Fava C, Castelli M, Minuz P (2021) Exposure to perfluoroalkyl chemicals and cardiovascular disease: experimental and epidemiological evidence. Front Endocrinol 12:706352

    Google Scholar 

  • Mi X, Yang YQ, Zeeshan M, Wang ZB, Zeng XY, Zhou Y, Yang BY, Hu LW, Yu HY, Zeng XW, Liu RQ, Dong GH (2020) Serum levels of per- and polyfluoroalkyl substances alternatives and blood pressure by sex status: Isomers of C8 health project in China. Chemosphere 261:127691

    CAS  PubMed  Google Scholar 

  • Min JY, Lee KJ, Park JB, Min KB (2012) Perfluorooctanoic acid exposure is associated with elevated homocysteine and hypertension in us adults. Occup Environ Med 69:658–662

    CAS  PubMed  Google Scholar 

  • Mobacke I, Lind L, Dunder L, Salihovic S, Lind PM (2018) Circulating levels of perfluoroalkyl substances and left ventricular geometry of the heart in the elderly. Environ Int 115:295–300

    CAS  PubMed  Google Scholar 

  • Montaigne D, Butruille L, Staels B (2021) PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 18:809–823

    CAS  PubMed  Google Scholar 

  • Mora AM, Fleisch AF, Rifas-Shiman SL, Woo Baidal JA, Pardo L, Webster TF, Calafat AM, Ye X, Oken E, Sagiv SK (2018) Early life exposure to per- and polyfluoroalkyl substances and mid-childhood lipid and alanine aminotransferase levels. Environ Int 111:1–13

    CAS  PubMed  Google Scholar 

  • Nielsen G, Heiger-Bernays WJ, Schlezinger JJ, Webster TF (2022) Predicting the effects of per- and polyfluoroalkyl substance mixtures on peroxisome proliferator-activated receptor alpha activity in vitro. Toxicology 465:153024

    CAS  PubMed  Google Scholar 

  • Nieuwenhuijsen MJ (2018) Influence of urban and transport planning and the city environment on cardiovascular disease. Nat Rev Cardiol 15:432–438

    PubMed  Google Scholar 

  • Oh J, Bennett DH, Calafat AM, Tancredi D, Roa DL, Schmidt RJ, Hertz-Picciotto I, Shin HM (2021) Prenatal exposure to per- and polyfluoroalkyl substances in association with autism spectrum disorder in the marbles study. Environ Int 147:106328

    CAS  PubMed  Google Scholar 

  • Ou Y, Zeng X, Lin S, Bloom MS, Han F, Xiao X, Wang H, Matala R, Li X, Qu Y, Nie Z, Dong G, Liu X (2021) Gestational exposure to perfluoroalkyl substances and congenital heart defects: a nested case-control pilot study. Environ Int 154:106567

    CAS  PubMed  Google Scholar 

  • Panieri E, Baralic K, Djukic-Cosic D, Buha Djordjevic A, Saso L (2022b) Pfas molecules: a major concern for the human health and the environment. Toxics 10:44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta AA, Schwartz J, Gold DR, Vonk JM, Vermeulen R, Gehring U (2022) Quantile regression to examine the association of air pollution with subclinical atherosclerosis in an adolescent population. Environ Int 164:107285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfohl M, Ingram L, Marques E, Auclair A, Barlock B, Jamwal R, Anderson D, Cummings BS, Slitt AL (2020) Perfluorooctanesulfonic acid and perfluorohexanesulfonic acid alter the blood lipidome and the hepatic proteome in a murine model of diet-induced obesity. Toxicol Sci 178:311–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pica NE, Funkhouser J, Yin Y, Zhang Z, Ceres DM, Tong T, Blotevogel J (2019) Electrochemical oxidation of hexafluoropropylene oxide dimer acid (genx): mechanistic insights and efficient treatment train with nanofiltration. Environ Sci Technol 53:12602–12609

    CAS  PubMed  Google Scholar 

  • Pirillo A, Casula M, Olmastroni E, Norata GD, Catapano AL (2021) Global epidemiology of dyslipidaemias. Nat Rev Cardiol 18:689–700

    CAS  PubMed  Google Scholar 

  • Pitter G, Zare Jeddi M, Barbieri G, Gion M, Fabricio ASC, Daprà F, Russo F, Fletcher T, Canova C (2020) Perfluoroalkyl substances are associated with elevated blood pressure and hypertension in highly exposed young adults. Environ Sci Technol Lett 19:102

    CAS  Google Scholar 

  • Poothong S, Papadopoulou E, Padilla-Sánchez JA, Thomsen C, Haug LS (2020) Multiple pathways of human exposure to poly- and perfluoroalkyl substances (pfass): from external exposure to human blood. Environ Int 134:105244

    CAS  PubMed  Google Scholar 

  • Poteser M, Hutter HP, Moshammer H, Weitensfelder L (2020) Perfluoroctanoic acid (PFOA) enhances NOTCH-signaling in an angiogenesis model of placental trophoblast cells. Int J Hyg Environ Health 229:113566

    CAS  PubMed  Google Scholar 

  • Qian Y, Ducatman A, Ward R, Leonard S, Bukowski V, Lan Guo N, Shi X, Vallyathan V, Castranova V (2010) Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability. J Toxicol Environ Health A 73:819–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu L, Qian Y, Liu Z, Wang C, Qu J, Wang X, Wang S (2016) Perfluorooctane sulfonate (pfos) disrupts blood-testis barrier by down-regulating junction proteins via p38 mapk/atf2/mmp9 signaling pathway. Toxicology 373:1–12

    CAS  PubMed  Google Scholar 

  • Ren Y, Jin L, Yang F, Liang H, Zhang Z, Du J, Song X, Miao M (2020) Concentrations of perfluoroalkyl and polyfluoroalkyl substances and blood glucose in pregnant women. Environ Health 19:88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers JM, Ellis-Hutchings RG, Grey BE, Zucker RM, Norwood J Jr, Grace CE, Gordon CJ, Lau C (2014) Elevated blood pressure in offspring of rats exposed to diverse chemicals during pregnancy. Toxicol Sci 137:436–446

    CAS  PubMed  Google Scholar 

  • Rosen MB, Das KP, Rooney J, Abbott B, Lau C, Corton JC (2017) PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology 387:95–107

    CAS  PubMed  Google Scholar 

  • Rosenmai AK, Ahrens L, le Godec T, Lundqvist J, Oskarsson A (2018) Relationship between peroxisome proliferator-activated receptor alpha activity and cellular concentration of 14 perfluoroalkyl substances in hepg2 cells. J Appl Toxicol 38:219–226

    CAS  PubMed  Google Scholar 

  • Roth K, Yang Z, Agarwal M, Liu W, Peng Z, Long Z, Birbeck J, Westrick J, Liu W, Petriello MC (2021) Exposure to a mixture of legacy, alternative, and replacement per- and polyfluoroalkyl substances (PFAS) results in sex-dependent modulation of cholesterol metabolism and liver injury. Environ Int 157:106843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salihovic S, Fall T, Ganna A, Broeckling CD, Prenni JE, Hyötyläinen T, Kärrman A, Lind PM, Ingelsson E, Lind L (2019) Identification of metabolic profiles associated with human exposure to perfluoroalkyl substances. J Expo Sci Environ Epidemiol 29:196–205

    CAS  PubMed  Google Scholar 

  • Salimi A, Nikoosiar Jahromi M, Pourahmad J (2019) Maternal exposure causes mitochondrial dysfunction in brain, liver, and heart of mouse fetus: an explanation for perfluorooctanoic acid induced abortion and developmental toxicity. Environ Toxicol 34:878–885

    CAS  PubMed  Google Scholar 

  • Sanchez Garcia D, Sjödin M, Hellstrandh M, Norinder U, Nikiforova V, Lindberg J, Wincent EBÅ, Cotgreave I, Munic Kos V (2018) Cellular accumulation and lipid binding of perfluorinated alkylated substances (PFASs) - a comparison with lysosomotropic drugs. Chem Biol Interact 281:1–10

    CAS  PubMed  Google Scholar 

  • Sanin V, Pfetsch V, Koenig W (2017) Dyslipidemias and cardiovascular prevention: tailoring treatment according to lipid phenotype. Curr Cardiol Rep 19:61

    PubMed  Google Scholar 

  • Schlezinger JJ, Puckett H, Oliver J, Nielsen G, Heiger-Bernays W, Webster TF (2020) Perfluorooctanoic acid activates multiple nuclear receptor pathways and skews expression of genes regulating cholesterol homeostasis in liver of humanized pparα mice fed an American diet. Toxicol Appl Pharmacol 405:115204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlezinger JJ, Hyötyläinen T, Sinioja T, Boston C, Puckett H, Oliver J, Heiger-Bernays W, Webster TF (2021) Perfluorooctanoic acid induces liver and serum dyslipidemia in humanized pparα mice fed an American diet. Toxicol Appl Pharmacol 426:115644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senoner T, Dichtl W (2019a) Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients 11:2090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seyoum A, Pradhan A, Jass J, Olsson PE (2020) Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna. Sci Total Environ 737:139682

    CAS  PubMed  Google Scholar 

  • Shankar A, Xiao J, Ducatman A (2012) Perfluorooctanoic acid and cardiovascular disease in us adults. Arch Intern Med 172:1397–1403

    CAS  PubMed  Google Scholar 

  • Sheng N, Cui R, Wang J, Guo Y, Wang J, Dai J (2018) Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein. Arch Toxicol 92:359–369

    CAS  PubMed  Google Scholar 

  • Shi X, Du Y, Lam PK, Wu RS, Zhou B (2008) Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicol Appl Pharmacol 230:23–32

    CAS  PubMed  Google Scholar 

  • Shi G, Cui Q, Pan Y, Sheng N, Guo Y, Dai J (2017a) 6:2 fluorotelomer carboxylic acid (6:2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis. Aquat Toxicol 190:53–61

    CAS  PubMed  Google Scholar 

  • Shi G, Cui Q, Pan Y, Sheng N, Sun S, Guo Y, Dai J (2017b) 6:2 chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos. Aquat Toxicol 185:67–75

    CAS  PubMed  Google Scholar 

  • Simpson C, Winquist A, Lally C, Steenland K (2013) Relation between perfluorooctanoic acid exposure and strokes in a large cohort living near a chemical plant. Environ Res 127:22–28

    CAS  PubMed  Google Scholar 

  • Sinclair GM, Long SM, Jones OAH (2020) What are the effects of PFAS exposure at environmentally relevant concentrations? Chemosphere 258:127340

    CAS  PubMed  Google Scholar 

  • Sinisalu L, Yeung LWY, Wang J, Pan Y, Dai J, Hyötyläinen T (2021) Prenatal exposure to poly-/per-fluoroalkyl substances is associated with alteration of lipid profiles in cord-blood. Metabolomics 17:103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spratlen MJ, Perera FP, Lederman SA, Robinson M, Kannan K, Trasande L, Herbstman J (2019) Cord blood perfluoroalkyl substances in mothers exposed to the world trade center disaster during pregnancy. Environ Pollut 246:482–490

    CAS  PubMed  Google Scholar 

  • Spratlen MJ, Perera FP, Lederman SA, Robinson M, Kannan K, Herbstman J, Trasande L (2020) The association between perfluoroalkyl substances and lipids in cord blood. J Clin Endocrinol Metab 105:43–54

    PubMed  Google Scholar 

  • Starling AP, Engel SM, Whitworth KW, Richardson DB, Stuebe AM, Daniels JL, Haug LS, Eggesbø M, Becher G, Sabaredzovic A, Thomsen C, Wilson RE, Travlos GS, Hoppin JA, Baird DD, Longnecker MP (2014) Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian mother and child cohort study. Environ Int 62:104–112

    CAS  PubMed  Google Scholar 

  • Starling AP, Liu C, Shen G, Yang IV, Kechris K, Borengasser SJ, Boyle KE, Zhang W, Smith HA, Calafat AM, Hamman RF, Adgate JL, Dabelea D (2020) Prenatal exposure to per- and polyfluoroalkyl substances, umbilical cord blood DNA methylation, and cardio-metabolic indicators in newborns: the healthy start study. Environ Health Perspect 128:127014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stockholm-Convention (2018) Possible related control measures for perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds. Annex to decision POPRC-14/2.

  • Su C, Song S, Lu Y, Wang P, Meng J, Lu X, Jürgens MD, Khan K, Baninla Y, Liang R (2018) Multimedia fate and transport simulation of perfluorooctanoic acid/ perfluorooctanoate in an urbanizing area. Sci Total Environ 643:90–97

    CAS  PubMed  Google Scholar 

  • Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG (2019) A review of the pathways of human exposure to poly- and perfluoroalkyl substances (pfass) and present understanding of health effects. J Expo Sci Environ Epidemiol 29:131–147

    CAS  PubMed  Google Scholar 

  • Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 5:175

    PubMed  PubMed Central  Google Scholar 

  • Tang LL, Wang JD, Xu TT, Zhao Z, Zheng JJ, Ge RS, Zhu DY (2017) Mitochondrial toxicity of perfluorooctane sulfonate in mouse embryonic stem cell-derived cardiomyocytes. Toxicology 382:108–116

    CAS  PubMed  Google Scholar 

  • Tank S, Jain SK (2016) Altered cord blood lipid profile, insulin resistance and growth restriction during the perinatal period and its potential role in the risk of developing cardiovascular disease later in life. Indian J Med Res 144:151–153

    PubMed  PubMed Central  Google Scholar 

  • Tian Y, Zhou Y, Miao M, Wang Z, Yuan W, Liu X, Wang X, Wang Z, Wen S, Liang H (2018) Determinants of plasma concentrations of perfluoroalkyl and polyfluoroalkyl substances in pregnant women from a birth cohort in Shanghai, China. Environ Int 119:165–173

    CAS  PubMed  Google Scholar 

  • Tian Y, Miao M, Ji H, Zhang X, Chen A, Wang Z, Yuan W, Liang H (2021) Prenatal exposure to perfluoroalkyl substances and cord plasma lipid concentrations. Environ Pollut 268:115426

    CAS  PubMed  Google Scholar 

  • Tukker AM, Bouwman LMS, van Kleef R, Hendriks HS, Legler J, Westerink RHS (2020) Perfluorooctane sulfonate (pfos) and perfluorooctanoate (pfoa) acutely affect human α(1)β(2)γ(2l) gaba(a) receptor and spontaneous neuronal network function in vitro. Sci Rep 10:5311

    CAS  PubMed  PubMed Central  Google Scholar 

  • [UNEP] United Nations Environment Programme (2009) Decision SC‐4/17. Listing of perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride. In: Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants. Geneva (CH). http://www.pops.int/Portals/0/download.aspx?d=UNEP-POPS-COP.4-SC-4-17.English.pdf. Accessed 15 Sep 2020.

  • [UNEP] United Nations Environment Programme (2019a) Decision SC‐9/4: Listing of perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride. In: Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants. Geneva (CH). http://www.pops.int/Portals/0/download.aspx?d=UNEP-POPS-COP.9-SC-9-4.English.pdf. Accessed 15 Sep 2020.

  • [UNEP] United Nations Environment Programme (2019b) Decision SC‐9/12: listing of perfluorooctanoic acid (2019c), its salts and PFOA‐related compounds. In: Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants. Geneva (CH). http://chm.pops.int/Portals/0/download.aspx?d=UNEP-POPS-COP.9-SC-9-12.English.pdf. Accessed 15 Sep 2020.

  • [UNEP] United Nations Environment Programme (2019c) POPRC‐15/1: Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS‐related compounds. Geneva (CH). http://chm.pops.int/TheConvention/POPsReviewCommittee/Recommendations/tabid/243/Default.aspx. Accessed 15 Sep 2020.

  • Van Glubt S, Brusseau ML, Yan N, Huang D, Khan N, Carroll KC (2021) Column versus batch methods for measuring pfos and pfoa sorption to geomedia. Environ Pollut 268:115917

    PubMed  Google Scholar 

  • Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN et al (2020) Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation 141:e139–e596

    PubMed  Google Scholar 

  • Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CK (2012) PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport. Biochim Biophys Acta 1820:1092–1101

    CAS  PubMed  Google Scholar 

  • Wan HT, Mruk DD, Wong CK, Cheng CY (2014) Perfluorooctanesulfonate (pfos) perturbs male rat sertoli cell blood-testis barrier function by affecting f-actin organization via p-fak-tyr(407): an in vitro study. Endocrinology 155:249–262

    PubMed  Google Scholar 

  • Wang X, Li B, Zhao WD, Liu YJ, Shang DS, Fang WG, Chen YH (2011) Perfluorooctane sulfonate triggers tight junction “opening” in brain endothelial cells via phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 410:258–263

    CAS  PubMed  Google Scholar 

  • Wang S, Huang J, Yang Y, Hui Y, Ge Y, Larssen T, Yu G, Deng S, Wang B, Harman C (2013) First report of a Chinese pfos alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. Environ Sci Technol 47:10163–10170

    CAS  PubMed  Google Scholar 

  • Wang L, Wang Y, Liang Y, Li J, Liu Y, Zhang J, Zhang A, Fu J, Jiang G (2014) Pfos induced lipid metabolism disturbances in balb/c mice through inhibition of low-density lipoproteins excretion. Sci Rep 4:4582

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu L, Zhang W, Zhang J, Du X, Huang Q, Tian M, Shen H (2017) Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative /nitrosative stress in humans. Environ Pollut 229:168–176

    CAS  PubMed  Google Scholar 

  • Wang ZY, Liu YY, Liu GH, Lu HB, Mao CY (2018) L-carnitine and heart disease. Life Sci 194:88–97

    CAS  PubMed  Google Scholar 

  • Wang W, Mi X, Shi H, Zhang X, Zhou Z, Li C, Zhu D (2019a) Adsorption behaviour and mechanism of the pfos substitute obs (sodium p-perfluorous nonenoxybenzene sulfonate) on activated carbon. R Soc Open Sci 6:191069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chang W, Wang L, Zhang Y, Zhang Y, Wang M, Wang Y, Li P (2019b) A review of sources, multimedia distribution and health risks of novel fluorinated alternatives. Ecotoxicol Environ Saf 182:109402

    CAS  PubMed  Google Scholar 

  • Wang C, Jin C, Tu W, Jin Y (2021) Maternal exposure of mice to sodium p-perfluorous nonenoxybenzene sulfonate causes endocrine disruption in both dams and offspring. Endocr J 68:1165–1177

    PubMed  Google Scholar 

  • Wang C, Fang C, Wang C, Jin C, Qian M, Jin Y (2022) Maternal sodium p-perfluorous nonenoxybenzene sulfonate exposure disturbed lipid metabolism and induced an imbalance in tyrosine metabolism in the f1 generation of mice. Chem Res Toxicol 35:651–662

    PubMed  Google Scholar 

  • Wang P, Liu D, Yan S, Cui J, Liang Y, Ren S (2022) Adverse effects of perfluorooctane sulfonate on the liver and relevant mechanisms. Toxics. 10:265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Y, Mirji N, Irudayaraj J (2020) Epigenetic toxicity of pfoa and genx in hepg2 cells and their role in lipid metabolism. Toxicol Invitro 65:104797

    CAS  Google Scholar 

  • WHO (2017) http://www.who.int/cardiovascular_diseases/about_cvd/en/. Accessed 28 Dec 2017.

  • Winquist A, Steenland K (2014) Modeled pfoa exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts. Environ Health Perspect 122:1299–1305

    PubMed  PubMed Central  Google Scholar 

  • Wolf CJ, Schmid JE, Lau C, Abbott BD (2012) Activation of mouse and human peroxisome proliferator-activated receptor-alpha (pparα) by perfluoroalkyl acids (pfaas): further investigation of c4–c12 compounds. Reprod Toxicol 33:546–551

    CAS  PubMed  Google Scholar 

  • Wolf CJ, Takacs ML, Schmid JE, Lau C, Abbott BD (2008) Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths. Toxicol Sci 106:162–171

    CAS  PubMed  Google Scholar 

  • Wolf CJ, Takacs ML, Schmid JE, Lau C, Abbott BD (2018) Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths. Toxicol Sci 106:162–171

    Google Scholar 

  • Xia W, Wan Y, Li YY, Zeng H, Lv Z, Li G, Wei Z, Xu SQ (2011) PFOS prenatal exposure induce mitochondrial injury and gene expression change in hearts of weaned SD rats. Toxicology 282:23–29

    CAS  PubMed  Google Scholar 

  • Xiao SK, Wu Q, Pan CG, Yin C, Wang YH, Yu KF (2021) Distribution, partitioning behavior and potential source of legacy and alternative per- and polyfluoroalkyl substances (pfass) in water and sediments from a subtropical gulf, South China sea. Environ Res 201:111485

    CAS  PubMed  Google Scholar 

  • Xu L, Shi Y, Li C, Song X, Qin Z, Cao D, Cai Y (2017) Discovery of a novel polyfluoroalkyl benzenesulfonic acid around oilfields in northern China. Environ Sci Technol 51:14173–14181

    CAS  PubMed  Google Scholar 

  • Xu Y, Jurkovic-Mlakar S, Li Y, Wahlberg K, Scott K, Pineda D, Lindh CH, Jakobsson K, Engström K (2020) Association between serum concentrations of perfluoroalkyl substances (PFAS) and expression of serum microRNAs in a cohort highly exposed to PFAS from drinking water. Environ Int 136:105446

    CAS  PubMed  Google Scholar 

  • Xu X, Ni H, Guo Y, Lin Y, Ji J, Jin C, Yuan F, Feng M, Ji N, Zheng Y, Jiang Q (2021) Hexafluoropropylene oxide dimer acid (hfpo-da) induced developmental cardiotoxicity and hepatotoxicity in hatchling chickens: roles of peroxisome proliferator activated receptor alpha. Environ Pollut 290:118112

    CAS  PubMed  Google Scholar 

  • Xu D, Li L, Tang L, Guo M, Yang J (2022a) Perfluorooctane sulfonate induces heart toxicity involving cardiac apoptosis and inflammation in rats. Exp Ther Med 23:14

    CAS  PubMed  Google Scholar 

  • Xu M, Legradi J, Leonards P (2022b) Using comprehensive lipid profiling to study effects of pfhxs during different stages of early zebrafish development. Sci Total Environ 808:151739

    CAS  PubMed  Google Scholar 

  • Yang Q, Guo X, Sun P, Chen Y, Zhang W, Gao A (2018) Association of serum levels of perfluoroalkyl substances (pfass) with the metabolic syndrome (mets) in Chinese male adults: a cross-sectional study. Sci Total Environ 621:1542–1549

    CAS  PubMed  Google Scholar 

  • Yang R, Liu S, Liang X, Yin N, Ruan T, Jiang L, Faiola F (2020) F-53B and PFOS treatments skew human embryonic stem cell in vitro cardiac differentiation towards epicardial cells by partly disrupting the WNT signaling pathway. Environ Pollut 261:114153

    CAS  PubMed  Google Scholar 

  • Yang J, Wang H, Du H, Fang H, Han M, Xu L, Liu S, Yi J, Chen Y, Jiang Q, He G (2021) Serum perfluoroalkyl substances in relation to lipid metabolism in chinese pregnant women. Chemosphere 273:128566

    CAS  PubMed  Google Scholar 

  • Yao J, Pan Y, Sheng N, Su Z, Guo Y, Wang J, Dai J (2020) Novel perfluoroalkyl ether carboxylic acids (pfecas) and sulfonic acids (pfesas): occurrence and association with serum biochemical parameters in residents living near a fluorochemical plant in china. Environ Sci Technol 54:13389–13398

    CAS  PubMed  Google Scholar 

  • Yin N, Yang R, Liang S, Liang S, Hu B, Ruan T, Faiola F (2018) Evaluation of the early developmental neural toxicity of f-53b, as compared to pfos, with an in vitro mouse stem cell differentiation model. Chemosphere 204:109–118

    CAS  PubMed  Google Scholar 

  • Yu Y, Wang C, Zhang X, Zhu J, Wang L, Ji M, Wang SL (2020) Perfluorooctane sulfonate disrupts the blood brain barrier through the crosstalk between endothelial cells and astrocytes in mice. Environ Pollut 256:113429

    CAS  PubMed  Google Scholar 

  • Yu J, Cheng W, Jia M, Chen L, Gu C, Ren HQ, Wu B (2022) Toxicity of perfluorooctanoic acid on zebrafish early embryonic development determined by single-cell RNA sequencing. J Hazard Mater 427:127888

    CAS  PubMed  Google Scholar 

  • Zeng HC, He QZ, Li YY, Wu CQ, Wu YM, Xu SQ (2015) Prenatal exposure to PFOS caused mitochondia-mediated apoptosis in heart of weaned rat. Environ Toxicol 30:1082–1090

    CAS  PubMed  Google Scholar 

  • Zeng Z, Song B, Xiao R, Zeng G, Gong J, Chen M, Xu P, Zhang P, Shen M, Yi H (2019) Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. Environ Int 126:598–610

    CAS  PubMed  Google Scholar 

  • Zeng G, Zhang Q, Wang X, Wu KH (2022) The relationship between multiple perfluoroalkyl substances and cardiorespiratory fitness in male adolescents. Environ Sci Pollut Res Int 29(35):53433–53443

    CAS  PubMed  Google Scholar 

  • Zhang YY, Tang LL, Zheng B, Ge RS, Zhu DY (2016) Protein profiles of cardiomyocyte differentiation in murine embryonic stem cells exposed to perfluorooctane sulfonate. J Appl Toxicol 36:726–740

    CAS  PubMed  Google Scholar 

  • Zhao M, Jiang Q, Geng M, Zhu L, Xia Y, Khanal A, Wang C (2017a) The role of ppar alpha in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection-results of in ovo gene silencing. Environ Toxicol Pharmacol 56:136–144

    CAS  PubMed  Google Scholar 

  • Zhao M, Jiang Q, Wang W, Geng M, Wang M, Han Y, Wang C (2017b) The roles of reactive oxygen species and nitric oxide in perfluorooctanoic acid-induced developmental cardiotoxicity and l-carnitine mediated protection. Int J Mol Sci 18(6):1229

    PubMed  PubMed Central  Google Scholar 

  • Zhao D, Liu J, Wang M, Zhang X, Zhou M (2019) Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol 16:203–212

    PubMed  Google Scholar 

  • Zhang S, Zhang W, Zhou G (2019) Extended risk factors for stroke prevention. J Natl Med Assoc 111:447–456

    PubMed  Google Scholar 

  • Zhang Z, Wang F, Zhang Y, Yao J, Bi J, He J, Zhang S, Wei Y, Guo H, Zhang X, He M (2022) Associations of serum PFOA and PFOS levels with incident hypertension risk and change of blood pressure levels. Environ Res 212:113293

    CAS  PubMed  Google Scholar 

  • Zhou R, Cheng W, Feng Y, Wei H, Liang F, Wang Y (2017) Interactions between three typical endocrine-disrupting chemicals (EDCs) in binary mixtures exposure on myocardial differentiation of mouse embryonic stem cell. Chemosphere 178:378–383

    CAS  PubMed  Google Scholar 

  • Zhou W, Zhao S, Tong C, Chen L, Yu X, Yuan T, Aimuzi R, Luo F, Tian Y, Zhang J (2019) Dietary intake, drinking water ingestion and plasma perfluoroalkyl substances concentration in reproductive aged Chinese women. Environ Int 127:487–494

    CAS  PubMed  Google Scholar 

  • Zou Y, Wu Y, Wang Q, Wan J, Deng M, Tu W (2021) Comparison of toxicokinetics and toxic effects of PFOS and its novel alternative obs in zebrafish larvae. Chemosphere 265:129116

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (22006084); Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances (PTS2019-05; PTS2019-06); and graphical abstract was modified from Servier Medical Art (http://smart. servier.com/).

Author information

Authors and Affiliations

Authors

Contributions

ZJW, YJW, and YFZ searched the literature; YFZ provided inspiration and guidance for writing; ZJW and YJW wrote the manuscript; ZJW prepared all the figures and tables. All the authors read and approved the final manuscript. ZJW and YFZ revised and presented the final submit materials.

Corresponding author

Correspondence to Yin-Feng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, ZJ., Wei, YJ., Zhang, YF. et al. A review of cardiovascular effects and underlying mechanisms of legacy and emerging per- and polyfluoroalkyl substances (PFAS). Arch Toxicol 97, 1195–1245 (2023). https://doi.org/10.1007/s00204-023-03477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-023-03477-5

Keywords

Navigation