Toxicokinetics of temephos after oral administration to adult male rats

Abstract

Temephos (Tem) is the larvicide of choice to control mosquito transmission of dengue, Zika, and chikungunya. The toxicokinetic and toxicological information of temephos is very limited. The aim of this work was to determine the toxicokinetics and dosimetry of temephos and its metabolites. Male Wistar rats were orally administered temephos (300 mg/kg) emulsified with saline solution and sacrificed over time after dosing. Temephos and its metabolites were analyzed in blood and tissues by high performance liquid chromatography-diode array detector. At least eleven metabolites were detected, including temephos-sulfoxide (Tem-SO), temephos-oxon (Tem-oxon), temephos-oxon-sulfoxide (Tem-oxon-SO), temephos-oxon-SO-monohydrolyzed (Tem-oxon-SO-OH), 4,4´-thiodiphenol, 4,4´-sulfinyldiphenol, and 4,4´-sulfonyldiphenol or bisphenol S (BPS). The mean blood concentrations of temephos were fitted to a one-compartment model for kinetic analysis. At 2 h, the peak was reached (t1/2 abs = 0.38 h), and only trace levels were detected at 36 h (t1/2 elim = 8.6 h). Temephos was detected in all tissues and preferentially accumulated in fat. Temephos-sulfone-monohydrolyzed (Tem-SO2-OH) blood levels remained constant until 36 h and gradually accumulated in the kidney. Tem-oxon was detected in the brain, liver, kidney, and fat. Clearance from the liver and kidney were 7.59 and 5.52 ml/min, respectively. These results indicate that temephos is well absorbed, extensively metabolized, widely distributed and preferentially stored in adipose tissue. It is biotransformed into reactive metabolites such as Tem-oxons, Tem-dioxons, and BPS. Tem-SO2-OH, the most abundant metabolite of temephos, could be used as an exposure biomarker for toxicokinetic modeling. These results could provide critical insight into the dosimetry and toxicity of temephos and its metabolites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Baker LM (1998) Introduction. In: Clesceri LS, Greenber AE, Eaton AD (eds) Standard methods for the examination of water and wastewater, 20th edn. APHA-AWWA-WEF, Washington, DC, p 1

    Google Scholar 

  2. Benitez-Trinidad AB, Herrera-Moreno JF, Vázquez-Estrada G, Verdín-Betancourt FA, Sordo M, Ostrosky-Wegman P, Bernal-Hernández YY, Medina-Díaz IM, Barrón-Vivanco BS, Robledo-Marenco ML, Salazar AM, Rojas-García AE (2015) Cytostatic and genotoxic effect of temephos in human lymphocytes and HepG2 cells. Toxicol In Vitro 29:779–786. https://doi.org/10.1016/j.tiv.2015.02.008

    CAS  Article  PubMed  Google Scholar 

  3. Blinn RC (1969) Metabolic fate of Abate insecticide in the rat. J Agr Food Chem 17:118–122

    CAS  Article  Google Scholar 

  4. Buratti F, Volpe MT, Meneguz A, Vittozzi L, Testaia E (2003) CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes. Toxicol Appl Pharmacol 186:143–154. https://doi.org/10.1016/S0041-008X(02)00027-3

    CAS  Article  PubMed  Google Scholar 

  5. Buratti F, Leoni C, Testai E (2007) The human metabolism of organophosphorothionate pesticides: consequences for toxicological risk assessment. J Verbr Lebensm 2:37–44. https://doi.org/10.1007/s00003-006-0109-z

    CAS  Article  Google Scholar 

  6. Butler A, Murray M (1997) Inhibition and inactivation cytochrome P450 in rat liver by paration. Mol Pharmacol 43:902–908

    Google Scholar 

  7. De Buck SS, Sinha VK, Fenu LA, Nijsen MJ, Mackie CE, Gilissen RA (2007) Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs. Drug Metabol Disp. 35:1766–1780. https://doi.org/10.1124/dmd.107.015644

    CAS  Article  Google Scholar 

  8. Dressman J, Amidon G, Fleisher D (1985) Absorption potential: estimating the fraction absorbed for orally administered compounds. J Pharm Sci 74:588–589. https://doi.org/10.1002/jps.2600740523

    CAS  Article  PubMed  Google Scholar 

  9. Ennin M, Franklin C (1979) Some sub-cellular effects of an organophosphorus insecticide. Abate Br J Pharmacol 66:72

    Google Scholar 

  10. Eyer F, Meischner V, Kiderlen D, Thiermann H, Worek F, Haberkom M, Felgenhauer N, Zilker T, Eyer P (2003) Human parathion poisoning, a toxicokinetic analysis. Toxicol Rev 22:143–163. https://doi.org/10.2165/00139709-200322030-00003

    CAS  Article  PubMed  Google Scholar 

  11. Eyer F, Roberts DM, Buckley NA, Eddleston M, Thiermann H, Worek F, Eyer P (2009) Extreme variability in the formation of chlorpyrifos oxon (CPO) in patients poisoned by chlorpyrifos (CPF). Biochem Pharmacol. 78:531–537. https://doi.org/10.1016/j.bcp.2009.05.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Ferguson PW, Medon PJ, Nasri E (1985) Temephos (Abate) metabolism and toxicity in rats. Arch Environ Contam Toxicol 147:143–147

    Article  Google Scholar 

  13. Fest C, Schmidt KJ (1973) The chemistry of organophosphorus pesticides. Reactivity – synthesis – mode of action – toxicology, 1st edn. Springer-Verlag, Berlin Heidelberg, New York

    Google Scholar 

  14. Gallo MA, Lawryk NJ (1991) Organic phosphorus pesticides. In: Hayes WJ Jr, Laws ER Jr (eds) Handbook of pesticide toxicology: classes of pesticides, vol 2. Academic Press, San Diego

    Google Scholar 

  15. Hayes W Jr, Laws E Jr (2006) Handbook of pesticide toxicology volume 1: general principles; volumes 2 and 3: classes of pesticides. Academic Press, San Diego, pp 153–154

    Google Scholar 

  16. Hodgson E, Rose R (2006) Organophosphorus chemicals: potent inhibitors of the human metabolism of steroid hormones and xenobiotics. Drug Metabol Rev 38:149–162. https://doi.org/10.1080/03602530600569984

    CAS  Article  Google Scholar 

  17. HSDB (2003) Hazardous substances databank: temephos. National Library of Medicine, National Toxicology Program. Available http://www.toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB

  18. INE (2000) Instituto Nacional de Ecología. Available http://www2.ine.gob.mx/sistemas/plaguicidas/pdf/temefos.pdf. Accessed January 2017

  19. Jokanovic M (2001) Biotransformation of organophosphorus compounds. Toxicology 166:139–160. https://doi.org/10.1016/S0300-483X(01)00463-2

    CAS  Article  PubMed  Google Scholar 

  20. Kamel A, Byrne C, Vigo C, Ferrario J, Stafford C, Verdin G, Siegelman F, Knizner S, Hetrick J (2009) Oxidation of selected organophosphate pesticides during chlorination of simulated drinking water. Water Res 43:522–534. https://doi.org/10.1016/j.watres.2008.10.038

    CAS  Article  PubMed  Google Scholar 

  21. Katagi T, Tanaka H (2016) Metabolism, bioaccumulation, and toxicity of pesticides in aquatic insect larvae. J Pestic Sci 41:25–37. https://doi.org/10.1584/jpestics.D15-064

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kim S-H, Bae J-W, Kim D-H, Jeong D-J, Ha JJ, Yi JK, Kwon W-S (2020) Detrimental effects of temephos on male fertility: an in vitro study on a mouse model. Reprod Toxicol 96:150–155. https://doi.org/10.1016/j.reprotox.2020.06.008

    CAS  Article  PubMed  Google Scholar 

  23. Lacorte S, Ehresmann N, Barceló D (1996) Persistence of temephos and its transformation products in rice crop field waters. Environ Sci Technol 30:917–923. https://doi.org/10.1021/es9503589

    CAS  Article  Google Scholar 

  24. Lacorte S, Jeanty G, Marty JL, Barcelo D (1997) Identification of fenthion and temephos and their transformation products in water by high-performance liquid chromatography with diode array detection and atmospheric pressure chemical ionization mass spectrometric detection. J Chromatogr A 777:99–114. https://doi.org/10.1016/S0021-9673(97)00557-8

    CAS  Article  Google Scholar 

  25. Laurentino AOM, Medeiros FD, Oliveira J, Rosa N, Gomez TM, Peretti EM, Prophiro JS, Fortunato JJ (2019) Effects of prenatal exposure to temephos on behavior and social interaction. Neuropsyc Dis Treatm 15:669–673. https://doi.org/10.2147/NDT.S193896

    CAS  Article  Google Scholar 

  26. Laws ER Jr, Morales FR, Hayes J Jr, Joseph CR (1967) Toxicology of Abate in volunteers. Arch Environ Health 14:289–291. https://doi.org/10.1080/00039896.1967.10664733

    CAS  Article  PubMed  Google Scholar 

  27. Laws ER Jr, Sedlak VA, Miles JW, Joseph CR, Lacomba JR, Diaz-Rivera A (1968) Field study of the safety of abate for treating potable water and observations on the effectiveness of a control program involving both abate and malathion. Bull World Health Organ 38:439–445

    PubMed  PubMed Central  Google Scholar 

  28. Leesch JG, Fukuto TR (1972) The metabolism of abate in mosquito larvae and houseflies. Pestic Biochem Physiol 2:223–235

    CAS  Article  Google Scholar 

  29. Martins G, Pimenta P (2008) Structural changes in fat body of Aedes aegypti caused by aging and blood feeding. J Medical Entomol 45:1102–1107. https://doi.org/10.1093/jmedent/45.6.1102

    CAS  Article  Google Scholar 

  30. Molina-Molina J, Amaya E, Grimaldi M, Sáenz J, Real M, Fernández M, Balaguer P, Olea N (2013) In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl Pharmacol 272:127–136. https://doi.org/10.1016/J.TAAP.2013.05.015

    CAS  Article  PubMed  Google Scholar 

  31. Murphy SD, Cheever KL (1972) Carboxylesterase and cholinesterase inhibition in rats. Arch Environ Health 24:107–114

    CAS  Article  Google Scholar 

  32. NTRL (1984) Health and environmental effects profile for temephos. National Technical Reports Library. U.S. Department of Commerce. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB88162342.xhtml. Accessed 4 December 2020.

  33. Oie S (1986) Rug distribution and binding. J Clin Pharmacol 26:583–586

    CAS  Article  Google Scholar 

  34. Reyes-Chaparro A, Verdín-Betancourt FA, Sierra-Santoyo A (2020) Human biotransformation pathway of temephos using an in silico approach. Chem Res Toxicol 33:2765–2774. https://doi.org/10.1021/acs.chemrestox.0c00105

    CAS  Article  PubMed  Google Scholar 

  35. Roberts MS, Magnusson BM, Burczynski FJ, Weiss M (2002) Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokin 41:751–790. https://doi.org/10.2165/00003088-200241100-00005

    CAS  Article  Google Scholar 

  36. Roma GC, Bueno OC, Camargo-Mathias MI (2010) Morpho-physiological analysis of the insect fat body: a review. Micron 41:395–401. https://doi.org/10.1016/j.micron.2009.12.007

    CAS  Article  PubMed  Google Scholar 

  37. Seliskar M, Rozman D (2007) Mammalian cytochromes P450-importance of tissue specificity. Biochim Biophys Acta 1770:458–466. https://doi.org/10.1016/j.bbagen.2006.09.016

    CAS  Article  PubMed  Google Scholar 

  38. Sogorb MA, Estévez J, Vilanova E (2019) Case study: is bisphenol S safer than bisphenol A in thermal papers? Arch Toxicol 93:1835–1852. https://doi.org/10.1007/s00204-019-02474-x

    CAS  Article  PubMed  Google Scholar 

  39. Sultatos LG, Murphy SD (1983) Hepatic microsomal detoxification of the organophosphates paraoxon and chlorpyrifos oxon in the mouse. Drug Metabol Disp 11:232–238. https://doi.org/10.1007/BF00831892

    CAS  Article  Google Scholar 

  40. Usmani K, Cho T, Rose R, Hodgson E (2006) Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals. Drug Metabol Disp 34:1606–1614. https://doi.org/10.1124/dmd.106.010439

    CAS  Article  Google Scholar 

  41. U.S. EPA (2008) Environmental protection agency. Reregistration eligibility decision (RED) of temephos. Retrieved from http://www.epa.gov/oppsrrd1/REDs/temephos_red.htm#IIIB. Accessed January 2018

  42. U.S. EPA (2014) Health and environmental effects profile for temephos. U.S. Environmental Protection Agency, Washington, DC. EPA/600/X-84/230 (NTIS PB88162342). Accessed 2 December 2020

  43. Verdín-Betancourt FA, Figueroa M, López-González ML, Gómez E, Bernal-Hernández YY, Rojas-García AE, Sierra-Santoyo A (2019) In vitro inhibition of human red blood cell acetylcholinesterase (AChE) by temephos-oxidized products. Sci Rep 9:14758. https://doi.org/10.1038/s41598-019-51261-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Voicu VA, Thiermann H, Radulescu FS, Mircioiu C, Miron DS (2009) The toxicokinetics and toxicodynamics of organophosphonates versus the pharmacokinetics and pharmacodynamics of oxime antidotes: biological consequences. Basic Clin Pharmacol Toxicol 106:73–85. https://doi.org/10.1111/j.1742-7843.2009.00486.x

    CAS  Article  PubMed  Google Scholar 

  45. WHO (2006) Temephos. In: Pesticide residues in food 2006. Joint FAO/WHO meeting on pesticide residues. FAO/WHO, Rome, pp 220–224. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/JMPRrepor2006.pdf. Accessed 8 December 2020

  46. WHO (2010) The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. World Health Organization. https://apps.who.int/iris/handle/10665/44271

  47. WHO (2017) Guidelines for drinking-water quality. Fourth edition incorporating the first addendum. World Health Organization, Geneva, pp 441–442

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the excellent animal technical support of UPEAL-Cinvestav from Benjamín Emmanuel Chávez Álvarez, Rafael Leyva-Muñoz, María Antonieta López-López, and UPEAL Chairman Dr. Jorge Fernández.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adolfo Sierra-Santoyo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verdín-Betancourt, F.A., Figueroa, M., Soto-Ramos, A.G. et al. Toxicokinetics of temephos after oral administration to adult male rats. Arch Toxicol 95, 935–947 (2021). https://doi.org/10.1007/s00204-021-02975-8

Download citation

Keywords

  • Temephos
  • Organophosphorus pesticides
  • Toxicokinetics
  • Metabolism
  • Biomarkers