A lipidomics approach reveals new insights into Crotalus durissus terrificus and Bothrops moojeni snake venoms

Abstract

Snakebite envenomation causes > 81,000 deaths and incapacities in another 400,000 people worldwide every year. Snake venoms are complex natural secretions comprised of hundreds of different molecules with a wide range of biological functions that after injection cause local and systemic manifestations. Although several studies have investigated snake venoms, the majority have focused on the protein portion (toxins), without significant attention paid to the lipid fraction. Therefore, an untargeted lipidomic approach based on liquid chromatography with high-resolution mass spectrometry (LC-HRMS) was applied to investigate the lipid constituents of venoms of the snake species Crotalus durissus terrificus and Bothrops moojeni. Phosphatidylcholines (PC), Lyso-PCs, phosphatidylethanolamines (PE), Lyso-PE, phosphatidylserine (PS), phosphatidylinositol (PI), ceramides (Cer), and sphingomyelin (SM) species were detected in the analyzed snake venoms. The identified lipids included bioactive compounds such as platelet-activating factor (PAF) precursor, PAF-like molecules, plasmalogens, ceramides, and sphingomyelins with long fatty acid chain lengths, which may be associated with the systemic responses triggered by C. d. terrificus and B. moojeni envenomation. These responses include platelet aggregation, activation of intercellular adhesion molecule 1 (ICAM1), apoptosis, as well as the production of pro-inflammatory lipid mediators, cytokines, and reactive species. The newly proposed lipidomics strategy provided valuable information regarding the lipid profiles of viperid venoms, which could lead to increased understanding of the complex pathology promoted by snakebite envenomation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

All data is contained in the manuscript or the supplemental material, and are available from the corresponding author upon request.

References

  1. Aird SD (2002) Ophidian envenomation strategies and the role of purines. Toxicon 40:335–393. https://doi.org/10.1016/s0041-0101(01)00232-x

    CAS  Article  PubMed  Google Scholar 

  2. Albuquerque PLMM, Jacinto CN, Silva Junior GB et al (2013) Acute kidney injury caused by Crotalus and Bothrops snake venom: a review of epidemiology, clinical manifestations and treatment. Rev Inst Med Trop Sao Paulo 55:295–301. https://doi.org/10.1590/S0036-46652013000500001

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alencar LRV, Quental TB, Grazziotin FG et al (2016) Diversification in vipers: phylogenetic relationships, time of divergence and shifts in speciation rates. Mol Phylogenet Evol 105:50–62. https://doi.org/10.1016/j.ympev.2016.07.029

    Article  PubMed  Google Scholar 

  4. Belayev L, Eady TN, Khoutorova L et al (2012) Superior neuroprotective Efficacy of LAU-0901, a novel platelet-activating factor antagonist, in experimental stroke. Transl Stroke Res 3:154–163. https://doi.org/10.1007/s12975-011-0116-y

    CAS  Article  PubMed  Google Scholar 

  5. Bieber AL (1979) Metal and nonprotein constituents in snake venoms. In: Lee C-Y (ed) Snake venoms, 1st edn. Springer, Berlin, pp 295–306

    Chapter  Google Scholar 

  6. Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta Mol Basis Dis 1822:1442–1452. https://doi.org/10.1016/j.bbadis.2012.05.008

    CAS  Article  Google Scholar 

  7. Chang YC, Fong Y, Tsai E-M et al (2018) Exogenous C8-ceramide induces apoptosis by overproduction of ROS and the switch of superoxide dismutases SOD1 to SOD2 in human lung cancer cells. Int J Mol Sci. https://doi.org/10.3390/ijms19103010

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chong J, Wishart DS, Xia J (2019) Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinform 68:e86. https://doi.org/10.1002/cpbi.86

    Article  Google Scholar 

  9. de Castro I, Burdmann EA, Seguro AC, Yu L (2004) Bothrops venom induces direct renal tubular injury: role for lipid peroxidation and prevention by antivenom. Toxicon 43:833–839. https://doi.org/10.1016/j.toxicon.2004.03.015

    CAS  Article  PubMed  Google Scholar 

  10. de Oliveira IS, Cardoso IA, de Bordon KCF et al (2019) Global proteomic and functional analysis of Crotalus durissus collilineatus individual venom variation and its impact on envenoming. J Proteomics 191:153–165. https://doi.org/10.1016/j.jprot.2018.02.020

    CAS  Article  PubMed  Google Scholar 

  11. Demopoulos CA, Karantonis HC, Antonopoulou S (2003) Platelet activating factor—a molecular link between atherosclerosis theories. Eur J Lipid Sci Technol 105:705–716. https://doi.org/10.1002/ejlt.200300845

    CAS  Article  Google Scholar 

  12. Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. Nat Rev Immunol 15:511–523. https://doi.org/10.1038/nri3859

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Devi A (1968) The protein and nonprotein constituents of snake venoms. In: Biicherl W, Buckley EE, Deulofeu V (eds) Venom Anim Their Venoms, 1st edn. Academic Press, New York, pp 119–165

    Chapter  Google Scholar 

  14. Fischer H, Ellström P, Ekström K et al (2007) Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4. Cell Microbiol 9:1239–1251. https://doi.org/10.1111/j.1462-5822.2006.00867.x

    CAS  Article  PubMed  Google Scholar 

  15. Ganguly SN, Malkana MT (1936) Studies on Indian Snake Venoms. Part II. Cobra Venom: its Chemical Composition, Protein Fractions and their Physiological Actions. Indian J Med Res 24:281–286. https://ijmr.icmr.org.in/ijmr/archive/Archive.aspx

  16. Gutiérrez JM, Calvete JJ, Habib AG et al (2017) Snakebite envenoming. Nat Rev Dis Primers 3:17063. https://doi.org/10.1038/nrdp.2017.63

    Article  PubMed  Google Scholar 

  17. Herter JM, Rossaint J, Zarbock A (2014) Platelets in inflammation and immunity. J Thromb Haemost 12:1764–1775. https://doi.org/10.1111/jth.12730

    CAS  Article  PubMed  Google Scholar 

  18. Honda Z, Ishii S, Shimizu T (2002) Platelet-activating factor receptor. J Biochem 131:773–779. https://doi.org/10.1093/oxfordjournals.jbchem.a003164

    CAS  Article  PubMed  Google Scholar 

  19. Kakumanu R, Kemp-Harper BK, Silva A et al (2019) An in vivo examination of the differences between rapid cardiovascular collapse and prolonged hypotension induced by snake venom. Sci Rep 9:20231. https://doi.org/10.1038/s41598-019-56643-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Shields LBE, Gao Z et al (2017) Current understanding of platelet-activating factor signaling in central nervous system diseases. Mol Neurobiol 54:5563–5572. https://doi.org/10.1007/s12035-016-0062-5

    CAS  Article  PubMed  Google Scholar 

  21. Lomonte B, Calvete JJ (2017) Strategies in ‘snake venomics’ aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. J Venom Anim Toxins Incl Trop Dis 23:26. https://doi.org/10.1186/s40409-017-0117-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510:58–67. https://doi.org/10.1038/nature13475

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Malbranque S, Piercecchi-Marti MD, Thomas L et al (2008) Fatal diffuse thrombotic microangiopathy after a bite by the “Fer-de-Lance” pit viper (Bothrops lanceolatus) of Martinique. Am J Trop Med Hyg 78:856–861. https://doi.org/10.4269/ajtmh.2008.78.856

    Article  PubMed  Google Scholar 

  24. Marathe GK, Pandit C, Lakshmikanth CL et al (2014) To hydrolyze or not to hydrolyze: the dilemma of platelet-activating factor acetylhydrolase. J Lipid Res 55:1847–1854. https://doi.org/10.1194/jlr.R045492

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Marinho AD, Morais ICO, Lima DB et al (2015) Bothropoides pauloensis venom effects on isolated perfused kidney and cultured renal tubular epithelial cells. Toxicon 108:126–133. https://doi.org/10.1016/j.toxicon.2015.09.031

    CAS  Article  PubMed  Google Scholar 

  26. Merrill AH (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387–6422. https://doi.org/10.1021/cr2002917

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Montoni F, Andreotti DZ, dos Eichler RAS et al (2020) The impact of rattlesnake venom on mice cerebellum proteomics points to synaptic inhibition and tissue damage. J Proteomics 221:103779. https://doi.org/10.1016/j.jprot.2020.103779

    CAS  Article  PubMed  Google Scholar 

  28. Palur Ramakrishnan AVK, Varghese TP, Vanapalli S et al (2017) Platelet activating factor: a potential biomarker in acute coronary syndrome? Cardiovasc Ther 35:64–70. https://doi.org/10.1111/1755-5922.12233

    CAS  Article  PubMed  Google Scholar 

  29. Pinckard RN, Woodard DS, Showell HJ et al (1994) Structural and (patho)physiological diversity of PAF. Clin Rev Allergy 12:329–359. https://doi.org/10.1007/bf02802299

    CAS  Article  PubMed  Google Scholar 

  30. Pinho FMO, Zanetta DMT, Burdmann EA (2005) Acute renal failure after Crotalusdurissus snakebite: a prospective survey on 100 patients. Kidney Int 67:659–667. https://doi.org/10.1111/j.1523-1755.2005.67122.x

    Article  PubMed  Google Scholar 

  31. Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM (2000) Platelet-activating factor and related lipid mediators. Annu Rev Biochem 69:419–445. https://doi.org/10.1146/annurev.biochem.69.1.419

    CAS  Article  PubMed  Google Scholar 

  32. Rotolo JA, Zhang J, Donepudi M et al (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 280:26425–26434. https://doi.org/10.1074/jbc.M414569200

    CAS  Article  PubMed  Google Scholar 

  33. Rudd AK, Devaraj NK (2018) Traceless synthesis of ceramides in living cells reveals saturation-dependent apoptotic effects. Proc Natl Acad Sci U S A 115:7485–7490. https://doi.org/10.1073/pnas.1804266115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Sakamoto H, Yoshida T, Sanaki T et al (2017) Possible roles of long-chain sphingomyelines and sphingomyelin synthase 2 in mouse macrophage inflammatory response. Biochem Biophys Res Commun 482:202–207. https://doi.org/10.1016/j.bbrc.2016.11.041

    CAS  Article  PubMed  Google Scholar 

  35. Sorgi CA, Peti APF, Petta T et al (2018) Comprehensive high-resolution multiple-reaction monitoring mass spectrometry for targeted eicosanoid assays. Sci Data 5:180167. https://doi.org/10.1038/sdata.2018.167

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM (2003) Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Crit Rev Clin Lab Sci 40:643–672. https://doi.org/10.1080/714037693

    CAS  Article  PubMed  Google Scholar 

  37. Stith JL, Velazquez FN, Obeid LM (2019) Advances in determining signaling mechanisms of ceramide and role in disease. J Lipid Res 60:913–918. https://doi.org/10.1194/jlr.S092874

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Tasoulis T, Isbister GK (2017) A review and database of snake venom proteomes. Toxins 9:290. https://doi.org/10.3390/toxins9090290

    CAS  Article  PubMed Central  Google Scholar 

  39. Teixeira C, Cury Y, Moreira V et al (2009) Inflammation induced by Bothrops asper venom. Toxicon 54:67–76. https://doi.org/10.1016/j.toxicon.2009.03.019

    CAS  Article  PubMed  Google Scholar 

  40. Teixeira C, Fernandes CM, Leiguez E, Chudzinski-Tavassi AM (2019) Inflammation induced by platelet-activating viperid snake venoms: perspectives on thromboinflammation. Front Immunol 10:2082. https://doi.org/10.3389/fimmu.2019.02082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Thomas L, Chausson N, Uzan J et al (2006) Thrombotic stroke following snake bites by the “Fer-de-Lance”Bothrops lanceolatus in Martinique despite antivenom treatment: a report of three recent cases. Toxicon 48:23–28. https://doi.org/10.1016/j.toxicon.2006.04.007

    CAS  Article  PubMed  Google Scholar 

  42. Thon L, Möhlig H, Mathieu S et al (2005) Ceramide mediates caspase-independent programmed cell death. FASEB J 19:1945–1956. https://doi.org/10.1096/fj.05-3726com

    CAS  Article  PubMed  Google Scholar 

  43. Utkin YN (2015) Animal venom studies: current benefits and future developments. World J Biol Chem 6:28–33. https://doi.org/10.4331/wjbc.v6.i2.28

    Article  PubMed  PubMed Central  Google Scholar 

  44. Villar-Briones A, Aird SD (2018) Organic and peptidyl constituents of snake venoms: the picture is vastly more complex than we imagined. Toxins 10:392. https://doi.org/10.3390/toxins10100392

    CAS  Article  PubMed Central  Google Scholar 

  45. Wang J, Lv X-W, Du Y-G (2009) Potential mechanisms involved in ceramide-induced apoptosis in human colon cancer HT29 cells. Biomed Environ Sci 22:76–85. https://doi.org/10.1016/S0895-3988(09)60026-X

    CAS  Article  PubMed  Google Scholar 

  46. Warrell DA (2010) Snake bite. Lancet 375:77–88. https://doi.org/10.1016/S0140-6736(09)61754-2

    Article  PubMed  Google Scholar 

  47. WHO (2017) | Technical Report Series, No. 1004. Annex 5/Appendix 1 Worldwide Distribution of Medically Important Venomous Snakes. World Health Organization. https://www.who.int/bloodproducts/AntivenomGLrevWHO_TRS_1004_web_Annex_5.pdf. Accessed 26 Jun 2020

  48. WHO (2019) | Snakebite envenoming—a strategy for prevention and control. World Health Organization. https://www.who.int/snakebites/resources/9789241515641/en/. Accessed 26 Jun 2020

  49. Wu L-C, Pfeiffer DR, Calhoon EA et al (2011) Purification, identification, and cloning of lysoplasmalogenase, the enzyme that catalyzes hydrolysis of the vinyl ether bond of lysoplasmalogen. J Biol Chem 286:24916–24930. https://doi.org/10.1074/jbc.M111.247163

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Yost CC, Weyrich AS, Zimmerman GA (2010) The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie 92:692–697. https://doi.org/10.1016/j.biochi.2010.02.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Zoccal KF, Sorgi CA, Hori JI et al (2016) Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality. Nat Commun 7:10760. https://doi.org/10.1038/ncomms10760

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Zoccal KF, Gardinassi LG, Sorgi CA et al (2018) CD36 shunts eicosanoid metabolism to repress CD14 licensed interleukin-1β release and inflammation. Front Immunol 9:890. https://doi.org/10.3389/fimmu.2018.00890

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the São Paulo Research Foundation (FAPESP, Grants #2014/07125-6, and EMU #2015/00658-1) and the National Council for Scientific and Technological Development (CNPq, Research Grant 302514/2015-5). T.A. thanks the FAPESP for the post-doctoral fellowship (Grants #2018/25704-4). The authors would like to thank the biologist Luiz Henrique Anzaloni Pedrosa for extracting the snake venoms.

Funding

This work was supported by the São Paulo Research Foundation (FAPESP, Grants #2018/25704-4, #2014/07125-6, and EMU #2015/00658-1) and the National Council for Scientific and Technological Development (CNPq, Research Grant 302514/2015-5).

Author information

Affiliations

Authors

Contributions

TA: conceived of/designed the study, performed research, analyzed data and wrote the paper. VN: analyzed data and reviewed and edited the paper. LHF: conceived of/designed the study and reviewed and edited the paper.

Corresponding author

Correspondence to Lúcia Helena Faccioli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file1 (PDF 513 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acunha, T., Nardini, V. & Faccioli, L.H. A lipidomics approach reveals new insights into Crotalus durissus terrificus and Bothrops moojeni snake venoms. Arch Toxicol 95, 345–353 (2021). https://doi.org/10.1007/s00204-020-02896-y

Download citation

Keywords

  • Lipidomics
  • Snake venom
  • LC-HRMS
  • Bioactive lipids
  • Crotalus durissus terrificus
  • Bothrops moojeni