Advertisement

Archives of Toxicology

, Volume 93, Issue 7, pp 1979–1992 | Cite as

Novel insight in estrogen homeostasis and bioactivity in the ACI rat model of estrogen-induced mammary gland carcinogenesis

  • Daniela Pemp
  • Harald L. Esch
  • René Hauptstein
  • Frank J. Möller
  • Oliver Zierau
  • Maarten C. Bosland
  • Leo N. Geppert
  • Carolin Kleider
  • Katharina Schlereth
  • Günter Vollmer
  • Leane LehmannEmail author
Organ Toxicity and Mechanisms
  • 242 Downloads

Abstract

Despite being widely used to investigate 17β-estradiol (E2)-induced mammary gland (MG) carcinogenesis and prevention thereof, estrogen homeostasis and its significance in the female August Copenhagen Irish (ACI) rat model is unknown. Thus, levels of 12 estrogens including metabolites and conjugates were determined mass spectrometrically in 38 plasmas and 52 tissues exhibiting phenotypes ranging from normal to palpable tumor derived from a representative ACI study using two different diets. In tissues, 40 transcripts encoding proteins involved in estrogen (biotrans)formation, ESR1-mediated signaling, proliferation and oxidative stress were analyzed (TaqMan PCR). Influence of histo(patho)logic phenotypes and diet on estrogen and transcript levels was analyzed by 2-way ANOVA and explanatory variables influencing levels and bioactivity of estrogens in tissues were identified by multiple linear regression models. Estrogen profiles in tissue and plasma and the influence of Hsd17b1 levels on intra-tissue levels of E2 and E1 conclusively indicated intra-mammary formation of E2 in ACI tumors by HSD17B1-mediated conversion of E1. Proliferation in ACI tumors was influenced by Egfr, Igf1r, Hgf and Met levels. 2-MeO-E1, the only oxidative estrogen metabolite detected above 28–42 fmol/g, was predominately observed in hyperplastic tissues and intra-tissue conversion of E1 seemed to contribute to its levels. The association of the occurrence of 2-MeO-E1 with higher levels of oxidative stress observed in hyperplastic and tumor tissues remained equivocal. Thus, the present study provides mechanistic explanation for previous and future results observed in the ACI model.

Keywords

ACI rat Mammary estrogen profile Estrogen activity Tumorigenesis Multiple linear regression 

Notes

Acknowledgements

This work is part of the joint research project, IsoCross, entitled “Isoflavones: Cross-species comparison of metabolism, estrogen sensitivity, epigenetics and carcinogenesis”, which was supported in whole by grants from the German Research Foundation to L. Lehmann (DFG LE 1329/10–1) and G. Vollmer (DFG VO410/12-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

204_2019_2483_MOESM1_ESM.pdf (127 kb)
Supplementary material 1 (PDF 126 kb)
204_2019_2483_MOESM2_ESM.pdf (291 kb)
Supplementary material 2 (PDF 290 kb)
204_2019_2483_MOESM3_ESM.pdf (94 kb)
Supplementary material 3 (PDF 93 kb)
204_2019_2483_MOESM4_ESM.pdf (1.4 mb)
Supplementary material 4 (PDF 1464 kb)
204_2019_2483_MOESM5_ESM.pdf (1.3 mb)
Supplementary material 5 (PDF 1370 kb)
204_2019_2483_MOESM6_ESM.pdf (127 kb)
Supplementary material 6 (PDF 127 kb)

References

  1. Aiyer HS, Gupta RC (2010) Berries and ellagic acid prevent estrogen-induced mammary tumorigenesis by modulating enzymes of estrogen metabolism. Cancer Prev Res (Phila) 3:727–737.  https://doi.org/10.1158/1940-6207.CAPR-09-0260 CrossRefGoogle Scholar
  2. Böttner M, Suter-Crazzolara C, Schober A, Unsicker K (1999) Expression of a novel member of the TGF-beta superfamily, growth/differentiation factor-15/macrophage-inhibiting cytokine-1 (GDF-15/MIC-1) in adult rat tissues. Cell Tissue Res 297:103–110CrossRefGoogle Scholar
  3. Bouchard D, Morisset D, Bourbonnais Y, Tremblay GM (2006) Proteins with whey-acidic-protein motifs and cancer. Lancet Oncol 7:167–174.  https://doi.org/10.1016/S1470-2045(06)70579-4 CrossRefPubMedGoogle Scholar
  4. Bulun SE, Chen D, Moy I, Brooks DC, Zhao H (2012) Aromatase, breast cancer and obesity: a complex interaction. Trends Endocrinol Metab 23:83–89.  https://doi.org/10.1016/j.tem.2011.10.003 CrossRefPubMedGoogle Scholar
  5. Candido J, Hagemann T (2013) Cancer-related inflammation. J Clin Immunol 33(Suppl 1):S79–S84.  https://doi.org/10.1007/s10875-012-9847-0 CrossRefGoogle Scholar
  6. Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D (2000) Estrogens as endogenous genotoxic agents–DNA adducts and mutations. J Natl Cancer Inst Monogr 27:75–93CrossRefGoogle Scholar
  7. Coleman KD, Wright JA, Ghosh M, Wira CR, Fahey JV (2009) Estradiol modulation of hepatocyte growth factor by stromal fibroblasts in the female reproductive tract. Fertil Steril 92:1107–1109.  https://doi.org/10.1016/j.fertnstert.2008.10.047 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Das Gupta S, So JY, Wall B, Wahler J, Smolarek AK, Sae-Tan S, Soewono KY, Yu H, Lee MJ, Thomas PE, Yang CS, Suh N (2015) Tocopherols inhibit oxidative and nitrosative stress in estrogen-induced early mammary hyperplasia in ACI rats. Mol Carcinog 54:916–925.  https://doi.org/10.1002/mc.22164 CrossRefPubMedGoogle Scholar
  9. Degen GH, Janning P, Diel P, Bolt HM (2002) Estrogenic isoflavones in rodent diets. Toxicol Lett 128:145–157CrossRefGoogle Scholar
  10. Ding L, Zhao Y, Warren CL, Sullivan R, Eliceiri KW, Shull JD (2013) Association of cellular and molecular responses in the rat mammary gland to 17beta-estradiol with susceptibility to mammary cancer. BMC Cancer 13:573.  https://doi.org/10.1186/1471-2407-13-573 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dinkova-Kostova AT, Talalay P (2010) NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501:116–123.  https://doi.org/10.1016/j.abb.2010.03.019 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M (2007) Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 67:6477–6483.  https://doi.org/10.1158/0008-5472.CAN-07-0746 CrossRefPubMedGoogle Scholar
  13. Envigo (2016) Rodent diet and ingredient comparison. Technical resource. http://www.envigo.com/resources/brochures/rodent-diet-and-ingredient-comparison.pdf. Accessed 26 Feb 2019
  14. Fleming JM, Miller TC, Quinones M, Xiao Z, Xu X, Meyer MJ, Ginsburg E, Veenstra TD, Vonderhaar BK (2010) The normal breast microenvironment of premenopausal women differentially influences the behavior of breast cancer cells in vitro and in vivo. BMC Med 8:27.  https://doi.org/10.1186/1741-7015-8-27 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Mutat Res 533:211–226CrossRefGoogle Scholar
  16. Harvell DM, Strecker TE, Tochacek M, Xie B, Pennington KL, McComb RD, Roy SK, Shull JD (2000) Rat strain-specific actions of 17beta-estradiol in the mammary gland: correlation between estrogen-induced lobuloalveolar hyperplasia and susceptibility to estrogen-induced mammary cancers. Proc Natl Acad Sci USA 97:2779–2784.  https://doi.org/10.1073/pnas.050569097 CrossRefPubMedGoogle Scholar
  17. Helle J, Bader MI, Keiler AM et al (2016) Cross-talk in the female rat mammary gland: influence of aryl hydrocarbon receptor on estrogen receptor signaling. Environ Health Perspect 124:601–610.  https://doi.org/10.1289/ehp.1509680 CrossRefPubMedGoogle Scholar
  18. Kloosterboer HJ, Lofgren L, von Schoulz E, von Schoultz B, Verheul HA (2007) Estrogen and tibolone metabolite levels in blood and breast tissue of postmenopausal women recently diagnosed with early-stage breast cancer and treated with tibolone or placebo for 14 days. Reprod Sci 14:151–159.  https://doi.org/10.1177/1933719106298679 CrossRefPubMedGoogle Scholar
  19. Lanigan F, O’Connor D, Martin F, Gallagher WM (2007) Molecular links between mammary gland development and breast cancer. Cell Mol Life Sci 64:3159–3184.  https://doi.org/10.1007/s00018-007-7386-2 CrossRefPubMedGoogle Scholar
  20. Lehmann L, Jiang L, Wagner J (2008) Soy isoflavones decrease the catechol-O-methyltransferase-mediated inactivation of 4-hydroxyestradiol in cultured MCF-7 cells. Carcinogenesis 29:363–370.  https://doi.org/10.1093/carcin/bgm235 CrossRefPubMedGoogle Scholar
  21. Li SA, Weroha SJ, Tawfik O, Li JJ (2002) Prevention of solely estrogen-induced mammary tumors in female ACI rats by tamoxifen: evidence for estrogen receptor mediation. J Endocrinol 175:297–305CrossRefGoogle Scholar
  22. Li KM, Todorovic R, Devanesan P et al (2004) Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo. Carcinogenesis 25:289–297.  https://doi.org/10.1093/carcin/bgg191 CrossRefPubMedGoogle Scholar
  23. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153.  https://doi.org/10.1016/j.bbagen.2012.09.008 CrossRefPubMedGoogle Scholar
  24. Luzhna L, Kutanzi K, Kovalchuk O (2015) Gene expression and epigenetic profiles of mammary gland tissue: insight into the differential predisposition of four rat strains to mammary gland cancer. Mutat Res Genet Toxicol Environ Mutagen 779:39–56.  https://doi.org/10.1016/j.mrgentox.2014.07.006 CrossRefPubMedGoogle Scholar
  25. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13:616–630.  https://doi.org/10.1038/nrm3434 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Meier-Abt F, Bentires-Alj M (2014) How pregnancy at early age protects against breast cancer. Trends Mol Med 20:143–153.  https://doi.org/10.1016/j.molmed.2013.11.002 CrossRefPubMedGoogle Scholar
  27. Mense SM, Singh B, Remotti F, Liu X, Bhat HK (2009) Vitamin C and alpha-naphthoflavone prevent estrogen-induced mammary tumors and decrease oxidative stress in female ACI rats. Carcinogenesis 30:1202–1208.  https://doi.org/10.1093/carcin/bgp093 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mesia-Vela S, Sanchez R, Reuhl KR, Conney AH, Kauffman FC (2005) Metabolism of 17β-estradiol in ACI rat liver and mammary gland after chronic estradiol treatment. In: Li J, Li S, Llombart-Bosch A (eds) Hormonal carcinogenesis IV, 1st edn. Springer, US, pp 367–374CrossRefGoogle Scholar
  29. Möller FJ, Pemp D, Soukup ST, Wende K, Zhang X, Zierau O, Muders MH, Bosland MC, Kulling SE, Lehmann L, Vollmer G (2016) Soy isoflavone exposure through all life stages accelerates 17beta-estradiol-induced mammary tumor onset and growth, yet reduces tumor burden, in ACI rats. Arch Toxicol 90:1907–1916.  https://doi.org/10.1007/s00204-016-1674-2 CrossRefPubMedGoogle Scholar
  30. Rogan EG, Badawi AF, Devanesan PD, Meza JL, Edney JA, West WW, Higginbotham SM, Cavalieri EL (2003) Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer. Carcinogenesis 24:697–702CrossRefGoogle Scholar
  31. Rosner W, Hankinson SE, Sluss PM, Vesper HW, Wierman ME (2013) Challenges to the measurement of estradiol: an endocrine society position statement. J Clin Endocrinol Metab 98:1376–1387.  https://doi.org/10.1210/jc.2012-3780 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ruttkay-Nedecky B, Nejdl L, Gumulec J et al (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066.  https://doi.org/10.3390/ijms14036044 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Safe S, Kim K (2008) Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J Mol Endocrinol 41:263–275.  https://doi.org/10.1677/JME-08-0103 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Samavat H, Kurzer MS (2015) Estrogen metabolism and breast cancer. Cancer Lett 356:231–243.  https://doi.org/10.1016/j.canlet.2014.04.018 CrossRefPubMedGoogle Scholar
  35. Shull JD, Spady TJ, Snyder MC, Johansson SL, Pennington KL (1997) Ovary-intact, but not ovariectomized female ACI rats treated with 17beta-estradiol rapidly develop mammary carcinoma. Carcinogenesis 18:1595–1601CrossRefGoogle Scholar
  36. Shull JD, Dennison KL, Chack AC, Trentham-Dietz A (2018) Rat models of 17beta-estradiol-induced mammary cancer reveal novel insights into breast cancer etiology and prevention. Physiol Genomics 50:215–234.  https://doi.org/10.1152/physiolgenomics.00105.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Singh B, Bhat NK, Bhat HK (2012) Induction of NAD(P)H-quinone oxidoreductase 1 by antioxidants in female ACI rats is associated with decrease in oxidative DNA damage and inhibition of estrogen-induced breast cancer. Carcinogenesis 33:156–163.  https://doi.org/10.1093/carcin/bgr237 CrossRefPubMedGoogle Scholar
  38. Sobecki M, Mrouj K, Colinge J et al (2017) Cell-cycle regulation accounts for variability in Ki-67 expression levels. Cancer Res 77:2722–2734.  https://doi.org/10.1158/0008-5472.CAN-16-0707 CrossRefPubMedGoogle Scholar
  39. Stanczyk FZ, Mathews BW, Sherman ME (2015) Relationships of sex steroid hormone levels in benign and cancerous breast tissue and blood: a critical appraisal of current science. Steroids 99:91–102.  https://doi.org/10.1016/j.steroids.2014.12.011 CrossRefPubMedGoogle Scholar
  40. Taioli E, Im A, Xu X, Veenstra TD, Ahrendt G, Garte S (2010) Comparison of estrogens and estrogen metabolites in human breast tissue and urine. Reprod Biol Endocrinol 8:93.  https://doi.org/10.1186/1477-7827-8-93 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Takahashi S (2015) Positive and negative regulators of the metallothionein gene (review). Mol Med Rep 12:795–799.  https://doi.org/10.3892/mmr.2015.3459 CrossRefPubMedGoogle Scholar
  42. Thomas C, Gustafsson JA (2015) Progesterone receptor-estrogen receptor crosstalk: a novel insight. Trends Endocrinol Metab 26:453–454.  https://doi.org/10.1016/j.tem.2015.08.002 CrossRefPubMedGoogle Scholar
  43. Triplett AA, Sakamoto K, Matulka LA, Shen L, Smith GH, Wagner KU (2005) Expression of the whey acidic protein (Wap) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells. Genesis 43:1–11.  https://doi.org/10.1002/gene.20149 CrossRefPubMedGoogle Scholar
  44. Turan VK, Sanchez RI, Li JJ, Li SA, Reuhl KR, Thomas PE, Conney AH, Gallo MA, Kauffman FC, Mesia-Vela S (2004) The effects of steroidal estrogens in ACI rat mammary carcinogenesis: 17beta-estradiol, 2-hydroxyestradiol, 4-hydroxyestradiol, 16alpha-hydroxyestradiol, and 4-hydroxyestrone. J Endocrinol 183:91–99.  https://doi.org/10.1677/joe.1.05802 CrossRefPubMedGoogle Scholar
  45. Wang S, Dunlap TL, Huang L, Liu Y, Simmler C, Lantvit DD, Crosby J, Howell CE, Dong H, Chen SN, Pauli GF, van Breemen RB, Dietz BM, Bolton JL (2018) Evidence for chemopreventive and resilience activity of licorice: Glycyrrhiza glabra and G. inflata extracts modulate estrogen metabolism in ACI rats. Cancer Prev Res. 11:819–830.  https://doi.org/10.1158/1940-6207.CAPR-18-0178 CrossRefGoogle Scholar
  46. Weroha SJ, Li SA, Tawfik O, Li JJ (2006) Overexpression of cyclins D1 and D3 during estrogen-induced breast oncogenesis in female ACI rats. Carcinogenesis 27:491–498.  https://doi.org/10.1093/carcin/bgi278 CrossRefPubMedGoogle Scholar
  47. Yager JD (2015) Mechanisms of estrogen carcinogenesis: the role of E2/E1-quinone metabolites suggests new approaches to preventive intervention—a review. Steroids 99:56–60.  https://doi.org/10.1016/j.steroids.2014.08.006 CrossRefPubMedGoogle Scholar
  48. Yeager RL, Reisman SA, Aleksunes LM, Klaassen CD (2009) Introducing the “TCDD-inducible AhR-Nrf2 gene battery“. Toxicol Sci 111:238–246.  https://doi.org/10.1093/toxsci/kfp115 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zordoky BN, El-Kadi AO (2009) Role of NF-kappaB in the regulation of cytochrome P450 enzymes. Curr Drug Metab 10:164–178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Pharmacy and Food ChemistryUniversity of WürzburgWürzburgGermany
  2. 2.Chair of Molecular Cell Physiology and EndocrinologyUniversity of DresdenDresdenGermany
  3. 3.Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Chair of Mathematical Statistics with Applications in BiometricsTU Dortmund UniversityDortmundGermany

Personalised recommendations