Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo

Abstract

Evidence exists that humans are exposed to plastic microparticles via diet. Data on intestinal particle uptake and health-related effects resulting from microplastic exposure are scarce. Aim of the study was to analyze the uptake and effects of microplastic particles in human in vitro systems and in rodents in vivo. The gastrointestinal uptake of microplastics was studied in vitro using the human intestinal epithelial cell line Caco-2 and thereof-derived co-cultures mimicking intestinal M-cells and goblet cells. Different sizes of spherical fluorescent polystyrene (PS) particles (1, 4 and 10 µm) were used to study particle uptake and transport. A 28-days in vivo feeding study was conducted to analyze transport at the intestinal epithelium and oxidative stress response as a potential consequence of microplastic exposure. Male reporter gene mice were treated three times per week by oral gavage with a mixture of 1 µm (4.55 × 107 particles), 4 µm (4.55 × 107 particles) and 10 µm (1.49 × 106 particles) microplastics at a volume of 10 mL/kg/bw. Effects of particles on macrophage polarization were investigated using the human cell line THP-1 to detect a possible impact on intestinal immune cells. Altogether, the results of the study demonstrate the cellular uptake of a minor fraction of particles. In vivo data show the absence of histologically detectable lesions and inflammatory responses. The particles did not interfere with the differentiation and activation of the human macrophage model. The present results suggest that oral exposure to PS microplastic particles under the chosen experimental conditions does not pose relevant acute health risks to mammals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Araujo F, Pereira C, Costa J, Barrias C, Granja PL, Sarmento B (2016) In vitro M-like cells genesis through a tissue-engineered triple-culture intestinal model. J Biomed Mater Res B Appl Biomater 104(4):782–788. https://doi.org/10.1002/jbm.b.33508

    CAS  Article  PubMed  Google Scholar 

  2. Andrady AL (2003) Plastic litter and other marine debris. In: Andrady AL (ed) Plastics and the environment. Wiley, New York, pp 381–382

    Google Scholar 

  3. Bain CC, Mowat AM (2014) Macrophages in intestinal homeostasis and inflammation. Immunol Rev 260:102–117. https://doi.org/10.1111/imr.12192 (PMC4141699)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364:1985–1998. https://doi.org/10.1098/rstb.2008.0205

    CAS  Article  Google Scholar 

  5. Baumann L, Schmidt-Posthaus H, Segner H, Wolf JC (2016) Comment on “uptake and accumulation of polystyrene microplastics in zebrafish (danio rerio) and toxic effects in liver”. Environ Sci Technol 50:12521–12522. https://doi.org/10.1021/acs.est.6b04193

    CAS  Article  PubMed  Google Scholar 

  6. Braeuning A (2018) Uptake of microplastics and related health effects: a critical discussion of Deng et al., Scientific reports 7:46687, 2017. Arch Toxicol. https://doi.org/10.1007/s00204-018-2367-9

    Article  PubMed  Google Scholar 

  7. Bruinink A, Wang J, Wick P (2015) Effect of particle agglomeration in nanotoxicology. Arch Toxicol 89:659–675. https://doi.org/10.1007/s00204-015-1460-6

    CAS  Article  PubMed  Google Scholar 

  8. Canesi L, Ciacci C, Bergami E, Monopoli MP, Dawson KA, Papa S et al (2015) Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve mytilus. Mar Environ Res 111:34–40. https://doi.org/10.1016/j.marenvres.2015.06.008

    CAS  Article  PubMed  Google Scholar 

  9. Champion JA, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25:1815–1821. https://doi.org/10.1007/s11095-008-9562-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

    CAS  Article  PubMed  Google Scholar 

  11. Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA et al (2014) Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environ Sci Technol 48:12302–12311. https://doi.org/10.1021/es502569w (5260196)

    CAS  Article  PubMed  Google Scholar 

  12. Deng Y, Zhang Y, Lemos B, Ren H (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep 7:46687. https://doi.org/10.1038/srep46687 (28436478)

    Article  PubMed  PubMed Central  Google Scholar 

  13. des Rieux A, Fievez V, Theate I, Mast J, Preat V, Schneider YJ (2007) An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by m cells. Eur J Pharm Sci 30:380–391. https://doi.org/10.1016/j.ejps.2006.12.006 (17291730)

    CAS  Article  PubMed  Google Scholar 

  14. EFSA (2016) Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. https://doi.org/10.2903/j.efsa.2016.4501

    Article  Google Scholar 

  15. Frias JP, Sobral P, Ferreira AM (2010) Organic pollutants in microplastics from two beaches of the portuguese coast. Mar Pollut Bull 60:1988–1992. https://doi.org/10.1016/j.marpolbul.2010.07.030 (20800853)

    CAS  Article  PubMed  Google Scholar 

  16. Galloway TS (2015) Micro- and nano-plastics and human health. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer International Publishing, Cham, pp 343–366

    Google Scholar 

  17. Gauquie J, Devriese L, Robbens J, De Witte B (2015) A qualitative screening and quantitative measurement of organic contaminants on different types of marine plastic debris. Chemosphere 138:348–356. https://doi.org/10.1016/j.chemosphere.2015.06.029 (26126190)

    CAS  Article  PubMed  Google Scholar 

  18. Grainger JR, Konkel JE, Zangerle-Murray T, Shaw TN (2017) Macrophages in gastrointestinal homeostasis and inflammation. Pflug Arch Eur J Physiol 469:527–539. https://doi.org/10.1007/s00424-017-1958-2 (PMC5362667)

    CAS  Article  Google Scholar 

  19. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075. https://doi.org/10.1021/es2031505 (22321064)

    CAS  Article  PubMed  Google Scholar 

  20. Hirota K, Terada H (2012) Endocytosis of particle formulations by macrophages and its application to clinical treatment. INTECH Open Access Publisher, Rijieka

    Google Scholar 

  21. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. https://doi.org/10.1126/science.1260352 (25678662)

    CAS  Article  PubMed  Google Scholar 

  22. Jani P, Halbert GW, Langridge J, Florence AT (1989) The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 41:809–812. https://doi.org/10.1111/j.2042-7158.1989.tb06377.x (2576440)

    CAS  Article  PubMed  Google Scholar 

  23. Jani PU, Florence AT, McCarthy DE (1992a) Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int J Pharm 84:245–252. https://doi.org/10.1016/0378-5173(92)90162-U

    CAS  Article  Google Scholar 

  24. Jani PU, McCarthy DE, Florence AT (1992b) Nanosphere and microsphere uptake via peyer’s patches: observation of the rate of uptake in the rat after a single oral dose. Int J Pharm 86:239–246. https://doi.org/10.1016/0378-5173(92)90202-D

    CAS  Article  Google Scholar 

  25. Jepson MA, Simmons NL, Savidge TC, James PS, Hirst BH (1993) Selective binding and transcytosis of latex microspheres by rabbit intestinal m cells. Cell Tissue Res 271:399–405. https://doi.org/10.1007/BF02913722 (8472299)

    CAS  Article  PubMed  Google Scholar 

  26. Khalili Fard J, Jafari S, Eghbal MA (2015) A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5:447–454. https://doi.org/10.15171/apb.2015.061 (26819915)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Koeppen BM, Stanton BA (2017) Functional anatomy and general principles of regulation in the gastrointestinal tract. In: Koeppen BM, Stanton BA (eds) Berne & levy physiology, vol 7. Elsevier Health Sciences, Oxford, p 511

    Google Scholar 

  28. Lambert S, Wagner M (2016) Formation of microscopic particles during the degradation of different polymers. Chemosphere 161:510–517. https://doi.org/10.1016/j.chemosphere.2016.07.042 (27470943)

    CAS  Article  PubMed  Google Scholar 

  29. Lichtenstein D, Ebmeyer J, Knappe P, Juling S, Bohmert L, Selve S et al (2015) Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells. Biol Chem 396:1255–1264. https://doi.org/10.1515/hsz-2015-0145 (26040006)

    CAS  Article  PubMed  Google Scholar 

  30. Lichtenstein D, Ebmeyer J, Meyer T, Behr A-C, Kästner C, Böhmert L et al (2017a) It takes more than a coating to get nanoparticles through the intestinal barrier in vitro. Eur J Pharm Biopharm 118:21–29. https://doi.org/10.1016/j.ejpb.2016.12.004 (27993735)

    CAS  Article  PubMed  Google Scholar 

  31. Lichtenstein D, Meyer T, Böhmert L, Juling S, Fahrenson C, Selve S et al (2017b) Dosimetric quantification of coating-related uptake of silver nanoparticles. Langmuir 33:13087–13097. https://doi.org/10.1021/acs.langmuir.7b01851 (28918629)

    CAS  Article  PubMed  Google Scholar 

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2−δδct method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262 (11846609)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J et al (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (danio rerio) and toxic effects in liver. Environ Sci Technol 50:4054–4060. https://doi.org/10.1021/acs.est.6b00183 (26950772)

    CAS  Article  PubMed  Google Scholar 

  34. Lu L, Wan Z, Luo T, Fu Z, Jin Y (2018) Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ 631–632:449–458. https://doi.org/10.1016/j.scitotenv.2018.03.051 (29529433)

    CAS  Article  PubMed  Google Scholar 

  35. Martinez FO, Gordon S (2014) The m1 and m2 paradigm of macrophage activation: time for reassessment. F1000prime Rep 1:1. https://doi.org/10.12703/p6-13 (24669294)

    Article  Google Scholar 

  36. McMahon M, Ding S, Acosta-Jimenez LP, Frangova TG, Henderson CJ, Wolf CR (2018) Measuring in vivo responses to endogenous and exogenous oxidative stress using a novel haem oxygenase 1 reporter mouse. J Physiol 596:105–127. https://doi.org/10.1113/JP274915 (29086419)

    CAS  Article  PubMed  Google Scholar 

  37. Napper IE, Bakir A, Rowland SJ, Thompson RC (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99:178–185. https://doi.org/10.1016/j.marpolbul.2015.07.029 (26234612)

    CAS  Article  PubMed  Google Scholar 

  38. Olivier V, Duval JL, Hindie M, Pouletaut P, Nagel MD (2003) Comparative particle-induced cytotoxicity toward macrophages and fibroblasts. Cell Biol Toxicol 19:145–159. https://doi.org/10.1023/A:1024723326036 (12945743)

    CAS  Article  PubMed  Google Scholar 

  39. PlasticsEurope (2016) Plastics—the facts 2016: an analysis of European plastics production, demand and waste data. Accessed 22 Jan 2018

  40. Prietl B, Meindl C, Roblegg E, Pieber TR, Lanzer G, Frohlich E (2014) Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol 30:1–16. https://doi.org/10.1007/s10565-013-9265-y (PMC4434214)

    CAS  Article  PubMed  Google Scholar 

  41. Rochman CM, Kurobe T, Flores I, Teh SJ (2014) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661. https://doi.org/10.1016/j.scitotenv.2014.06.051 (24995635)

    CAS  Article  PubMed  Google Scholar 

  42. Santaolalla R, Fukata M, Abreu MT (2011) Innate immunity in the small intestine. Curr Opin Gastroenterol 27:125–131. https://doi.org/10.1097/MOG.0b013e3283438dea (21248635)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schmid O, Stoeger T (2016) Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci 99:133–143. https://doi.org/10.1016/j.jaerosci.2015.12.006

    CAS  Article  Google Scholar 

  44. Schwende H, Fitzke E, Ambs P, Dieter P (1996) Differences in the state of differentiation of thp-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin d3. J Leukoc Biol 59:555–561

    CAS  Article  Google Scholar 

  45. Schymanski D, Goldbeck C, Humpf HU, Furst P (2018) Analysis of microplastics in water by micro-raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162. https://doi.org/10.1016/j.watres.2017.11.011 (29145085)

    CAS  Article  PubMed  Google Scholar 

  46. Seifert J, Haraszti B, Sass W (1996) The influence of age and particle number on absorption of polystyrene particles from the rat gut. J Anat 189(Pt 3):483–486 (8982820)

    PubMed  PubMed Central  Google Scholar 

  47. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. https://doi.org/10.1039/c1cs15188f

    CAS  Article  PubMed  Google Scholar 

  48. Sica A, Erreni M, Allavena P, Porta C (2015) Macrophage polarization in pathology. Cell Mol Life Sci 72:4111–4126. https://doi.org/10.1007/s00018-015-1995-y (26210152)

    CAS  Article  PubMed  Google Scholar 

  49. Sinnecker H, Krause T, Koelling S, Lautenschlager I, Frey A (2014) The gut wall provides an effective barrier against nanoparticle uptake. Beilstein J Nanotechnol 5:2092–2101. https://doi.org/10.3762/bjnano.5.218 (25551037)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Smyth SH, Feldhaus S, Schumacher U, Carr KE (2008) Uptake of inert microparticles in normal and immune deficient mice. Int J Pharm 346:109–118. https://doi.org/10.1016/j.ijpharm.2007.06.049 (17723283)

    CAS  Article  PubMed  Google Scholar 

  51. Sutherland WJ, Clout M, Côté IM, Daszak P, Depledge MH, Fellman L et al (2010) A horizon scan of global conservation issues for 2010. Trends Ecol Evol 25:1–7. https://doi.org/10.1016/j.tree.2009.10.003 (19939492)

    Article  PubMed  Google Scholar 

  52. Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759–7764. https://doi.org/10.1021/es071737s (18075085)

    CAS  Article  PubMed  Google Scholar 

  53. Thompson RC (2015) Microplastics in the marine environment: Sources, consequences and solutions. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer International Publishing, Cham, pp 185–200

    Google Scholar 

  54. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T et al (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Can Res 42:1530–1536

    CAS  Google Scholar 

  55. van Wezel A, Caris I, Kools SA (2016) Release of primary microplastics from consumer products to wastewater in the netherlands. Environ Toxicol Chem 35:1627–1631. https://doi.org/10.1002/etc.3316 (26627661)

    CAS  Article  PubMed  Google Scholar 

  56. Walczak AP, Hendriksen PJ, Woutersen RA, van der Zande M, Undas AK, Helsdingen R et al (2015) Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats. J Nanoparticle Res Interdiscip Forum Nanoscale Sci Technol 17:231. https://doi.org/10.1007/s11051-015-3029-y (PMC4440892)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Anja Köllner and Beatrice Rosskopp for technical assistance. This work was supported by the German Federal Institute for Risk Assessment (Projects 1322-675, 1322-622 and 1323-102).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Linda Böhmert.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12830 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stock, V., Böhmert, L., Lisicki, E. et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol 93, 1817–1833 (2019). https://doi.org/10.1007/s00204-019-02478-7

Download citation

Keywords

  • Microplastic
  • Oral uptake
  • Particle size
  • Gastrointestinal barrier
  • HOTT mice