Archives of Toxicology

, Volume 93, Issue 6, pp 1491–1500 | Cite as

Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells

  • Anna MittagEmail author
  • Thomas Schneider
  • Martin Westermann
  • Michael Glei


Nanoparticles (NPs) are increasingly used in different consumer-related areas, for instance in food packaging or as additives, because of their enormous potential. Magnesium oxide (MgO) is an EU-approved food additive (E number 530). It is commonly used as a drying agent for powdered foods, for colour retention or as a food supplement. There are no consistent results regarding the effects of oral MgO NP uptake. Consequently, the aim of this study was to examine the effects of MgO NPs in the HT29 intestinal cell line. MgO NP concentrations ranged from 0.001 to 100 μg/ml and incubation times were up to 24 h. The cytotoxic and genotoxic potential were investigated. Apoptotic processes and cell cycle changes were analysed by flow cytometry. Finally, oxidative stress was examined. Transmission electron microscopy indicated that there was no cellular uptake. MgO NPs had no cytotoxic or genotoxic effects in HT29 cells and they did not induce apoptotic processes, cell cycle changes or oxidative stress.


Flow cytometry HT29 cells Magnesium oxide Nanoparticles Nanotoxicology Oral exposure 



The authors would like to extend their appreciation to Dr. Andrea Csáki from the Leibniz Institute of Photonic Technology Jena for the possibility of characterizing the nanoparticles. The current work (Project Number: 2017 FE 9049) was financially supported by The European Fund for Regional Development (EFRE).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

204_2019_2451_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1040 kb)


  1. Alqahtani S, Alomar SY (2017) Induction of apoptosis and cytokine markers in colon cancer cells by magnesium oxide (MgO) nanoparticles. Toxicol Eviron Chem 99(2):302–314CrossRefGoogle Scholar
  2. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290. CrossRefPubMedGoogle Scholar
  3. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641. CrossRefPubMedGoogle Scholar
  4. Beckman Coulter Inc (2017) Annexin A5 FITC/7-AAD KIT. B60224–AAGoogle Scholar
  5. Bertinato J, Plouffe LJ, Lavergne C, Ly C (2014) Bioavailability of magnesium from inorganic and organic compounds is similar in rats fed a high phytic acid diet. Magn Res 27(4):175–185. CrossRefGoogle Scholar
  6. Cao Y, Li J, Liu F et al (2016) Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: a review. Environ Toxicol Pharmacol 46:206–210. CrossRefPubMedGoogle Scholar
  7. Chaudhry Q, Scotter M, Blackburn J et al (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(3):241–258. CrossRefPubMedGoogle Scholar
  8. Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305(1):51–62. CrossRefPubMedGoogle Scholar
  9. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Tech 24(1):30–46. CrossRefGoogle Scholar
  10. Date AA, Hanes J, Ensign LM (2016) Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release 240:504–526. CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Matteis V (2017) Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics. CrossRefPubMedPubMedCentralGoogle Scholar
  12. DeLoid GM, Cohen JM, Pyrgiotakis G, Demokritou P (2017) Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc 12(2):355–371. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2):129–137. CrossRefPubMedGoogle Scholar
  14. Emerich DF (2005) Nanomedicine–prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 5(1):1–5. CrossRefPubMedGoogle Scholar
  15. Federal Ministry of Justice and Consumer Protection (2012) Verordnung über die Zulassung von Zusatzstoffen zu Lebensmitteln zu technologischen Zwecken (Zusatzstoff- Zulassungsverordnung - ZZulV), pp 1–92Google Scholar
  16. Ge S, Wang G, Shen Y et al (2011) Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET Nanobiotechnol 5(2):36. CrossRefPubMedGoogle Scholar
  17. Gerloff K, Albrecht C, Boots AW, Forster I, Schins RPF (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3(4):355–364. CrossRefGoogle Scholar
  18. Ghobadian M, Nabiuni M, Parivar K, Fathi M, Pazooki J (2015) Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio). Ecotoxicol Environ Saf 122:260–267. CrossRefPubMedGoogle Scholar
  19. Glei M, Schneider T, Schlormann W (2016) Comet assay: an essential tool in toxicological research. Arch Toxicol 90(10):2315–2336. CrossRefPubMedGoogle Scholar
  20. Hobson DW (2009) Commercialization of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(2):189–202. CrossRefPubMedGoogle Scholar
  21. Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomed (Lond) 11(6):673–692. CrossRefGoogle Scholar
  22. Huang YW, Cambre M, Lee HJ (2017) The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kalyanaraman B, Darley-Usmar V, Davies KJ et al (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6. CrossRefPubMedGoogle Scholar
  24. Kang SJ, Kim BM, Lee YJ, Chung HW (2008) Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 49(5):399–405. CrossRefPubMedGoogle Scholar
  25. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim SJ (2012) Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem 22(47):24610–24617. CrossRefGoogle Scholar
  26. Kumaran RS, Choi YK, Singh V et al (2015) In Vitro cytotoxic evaluation of MgO nanoparticles and their effect on the expression of ROS genes. Int J Mol Sci 16(4):7551–7564. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lai JC, Lai MB, Jandhyam S et al (2008) Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomed 3(4):533–545Google Scholar
  28. Mahmoud A, Ezgi O, Merve A, Ozhan G (2016) In vitro toxicological assessment of magnesium oxide nanoparticle exposure in several Mammalian cell types. Int J Toxicol 35(4):429–437. CrossRefPubMedGoogle Scholar
  29. Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111(5):3407–3432. CrossRefPubMedGoogle Scholar
  30. Mangalampalli B, Dumala N, Perumalla Venkata R, Grover P (2018) Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles in albino wistar rats after 28-day repeated oral exposure. Environ Toxicol 33(4):396–410. CrossRefPubMedGoogle Scholar
  31. McClements DJ, Xiao H (2017) Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Sci Food 1(1):6. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Moeini-Nodeh S, Rahimifard M, Baeeri M, Abdollahi M (2016) Functional improvement in rats’ pancreatic islets using magnesium oxide nanoparticles through antiapoptotic and antioxidant pathways. Biol Trace Elem Res. CrossRefPubMedGoogle Scholar
  33. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330. CrossRefPubMedGoogle Scholar
  34. Morgan K (2005) Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Risk Anal 25(6):1621–1635. CrossRefPubMedGoogle Scholar
  35. Neuhaus B, Tosun B, Rotan O, Frede A, Westendorf AM, Epple M (2016) Nanoparticles as transfection agents: a comprehensive study with ten different cell lines. RSC Adv 6(22):18102–18112. CrossRefGoogle Scholar
  36. Pozarowski P, Darzynkiewicz Z (2004) Analysis of cell cycle by flow cytometry. Methods Mol Biol 281:301–311. CrossRefPubMedGoogle Scholar
  37. Quamme GA (2008) Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol 24(2):230–235. CrossRefPubMedGoogle Scholar
  38. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schneider T, Westermann M, Glei M (2017) In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Arch Toxicol. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Scientific Committee on Emerging and Newly Identified Health Risks (2010) Scientific basis for the definition of the term “nanomaterial”. European Commission, LuxembourgGoogle Scholar
  41. Shao XR, Wei XQ, Song X et al (2015) Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif 48(4):465–474. CrossRefPubMedGoogle Scholar
  42. Singh N, Manshian B, Jenkins GJ et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23–24):3891–3914. CrossRefPubMedGoogle Scholar
  43. Smolkova B, El Yamani N, Collins AR, Gutleb AC, Dusinska M (2015) Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol 77:64–73. CrossRefPubMedGoogle Scholar
  44. Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8–18CrossRefGoogle Scholar
  45. Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H (2011) Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Cell Biol Toxicol 27(5):333–342. CrossRefPubMedGoogle Scholar
  46. The European Commission (2011) Comission recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union L275:38–40Google Scholar
  47. The Nanodatabase (2018) Accessed 10 Oct 2018
  48. Uysal N, Kizildag S, Yuce Z et al (2018) Timeline (bioavailability) of magnesium compounds in hours: which magnesium compound works best? Biol Trace Elem Res. CrossRefPubMedGoogle Scholar
  49. van der Merwe D, Tawde S, Pickrell JA, Erickson LE (2009) Nanocrystalline titanium dioxide and magnesium oxide in vitro dermal absorption in human skin. Cutan Ocul Toxicol 28(2):78–82. CrossRefPubMedGoogle Scholar
  50. Wetteland CL, Nguyen NY, Liu H (2016) Concentration-dependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles. Acta Biomater 35:341–356. CrossRefPubMedGoogle Scholar
  51. Wilhelmi V, Fischer U, van Berlo D, Schulze-Osthoff K, Schins RP, Albrecht C (2012) Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: facts and artefacts. Toxicol In Vitro 26(2):323–334. CrossRefPubMedGoogle Scholar
  52. Willers J, Heinemann M, Bitterlich N, Hahn A (2015) Intake of minerals from food supplements in a German population—a nationwide survey. Food Nutr Sci 6:205–215Google Scholar
  53. Wishart DS, Feunang YD, Guo AC et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(1):1074–1082. CrossRefGoogle Scholar
  54. Yamasaki M, Funakoshi S, Matsuda S et al (2014) Interaction of magnesium oxide with gastric acid secretion inhibitors in clinical pharmacotherapy. Eur J Clin Pharmacol 70(8):921–924. CrossRefPubMedGoogle Scholar
  55. Zhang J, Tang H, Liu Z, Chen B (2017) Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomed 12:8483–8493. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anna Mittag
    • 1
    Email author
  • Thomas Schneider
    • 1
  • Martin Westermann
    • 2
  • Michael Glei
    • 1
  1. 1.Department of Nutritional Toxicology, Institute of Nutritional SciencesFriedrich Schiller University JenaJenaGermany
  2. 2.Electron Microscopy CentreFriedrich Schiller University JenaJenaGermany

Personalised recommendations