Toxicity of C60 fullerene–cisplatin nanocomplex against Lewis lung carcinoma cells

  • Svitlana Prylutska
  • Iryna Grynyuk
  • Tetiana Skaterna
  • Iryna Horak
  • Anna Grebinyk
  • Liudmyla Drobot
  • Olga Matyshevska
  • Anton Senenko
  • Yuriy Prylutskyy
  • Anton Naumovets
  • Uwe Ritter
  • Marcus FrohmeEmail author


Cisplatin (Cis-Pt) is the cytotoxic agent widely used against tumors of various origin, but its therapeutic efficiency is substantially limited by a non-selective effect and high toxicity. Conjugation of Cis-Pt with nanocarriers is thought to be one option to enable drug targeting. The aim of this study was to estimate toxic effects of the nanocomplex formed by noncovalent interaction of C60 fullerene with Cis-Pt against Lewis lung carcinoma (LLC) cells in comparison with free drug. Scanning tunneling microscopy showed that the minimum size of C60–Cis-Pt nanoparticles in aqueous colloid solution was 1.1 nm whereas that of C60 fullerene was 0.72 nm, thus confirming formation of the nanocomplex. The cytotoxic effect of C60–Cis-Pt nanocomplex against LLC cells was shown to be higher with IC50 values 3.3 and 4.5 times lower at 48 h and 72 h, respectively, as compared to the free drug. 12.5 µM Cis-Pt had no effect on LLC cell viability and morphology while C60–Cis-Pt nanocomplex in Cis-Pt-equivalent concentration substantially decreased the cell viability, impaired their shape and adhesion, inhibited migration and induced accumulation in proapoptotic subG1 phase. Apoptosis induced by the C60–Cis-Pt nanocomplex was confirmed by caspase 3/7 activation and externalization of phosphatidylserine on the outer surface of LLC cells with the double Annexin V-FITC/PI staining. We assume that C60 fullerene as a component of the C60–Cis-Pt nanocomplex promoted Cis-Pt entry and intracellular accumulation thus contributing to intensification of the drug’s toxic effect against lung cancer cells.


C60 fullerene Cisplatin C60–Cis-Pt nanocomplex Lewis lung carcinoma cells Cytotoxicity Scanning tunneling microscopy 





Dulbecco’s modified Eagle’s medium




Fetal bovine serum


Lewis lung carcinoma


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide


Phosphate-buffered saline


Scanning tunneling microscopy



SP is grateful to the DAAD (Germany) for support. AG also thanks the DAAD for the support (scholarship 57129429).


This study was partially supported by STCU project no. 6256.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahmad S (2010) Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 7(3):543–566. CrossRefGoogle Scholar
  2. Asada R, Liao F, Saitoh Y, Miwa N (2014) Photodynamic anti-cancer effects of fullerene [C60]–PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Mol Cell Biochem 390:175–184. CrossRefGoogle Scholar
  3. Bouška P (2009) Mechanisms of resistance to platinum cytotoxic drugs. Diploma Thesis. Faculty of Pharmacy, Charles University, PragueGoogle Scholar
  4. Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:32–41CrossRefGoogle Scholar
  5. Brozovic A, Ambriović-Ristov A, Osmak M (2010) The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol 40:347–359. CrossRefGoogle Scholar
  6. Carmichael J, Degraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942Google Scholar
  7. Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Pérez JM (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7(1):3–18CrossRefGoogle Scholar
  8. Da Ros T, Spalluto G, Prato M (2001) Biological applications of fullerene derivatives: a brief overview. Croat Chem Acta 74(4):743–755Google Scholar
  9. Deavall DG, Martin EA, Horner JM, Roberts R (2012) Drug-induced oxidative stress and toxicity. J Toxicol 13:645460. Google Scholar
  10. Duan X, He C, Kron SJ, Lin W (2016) Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(5):776–791. CrossRefGoogle Scholar
  11. Florea AM, Büsselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3:1351–1371. CrossRefGoogle Scholar
  12. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localization of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119. CrossRefGoogle Scholar
  13. Franskevych D, Palyvoda K, Petukhov D, Prylutska S, Grynyuk I, Schuetze C, Drobot L, Matyshevska O, Ritter U (2017) Fullerene C60 penetration into leukemic cells and its photoinduced cytotoxic effects. Nanoscale Res Lett 12:40. CrossRefGoogle Scholar
  14. Gelderman MP, Simakova O, Clogston JD, Patri AK, Siddiqui SF, Vostal AC, Simak J (2008) Adverse effects of fullerenes on endothelial cells: fullerenol C60(OH)24 induced tissue factor and ICAM-I membrane expression and apoptosis in vitro. Int J Nanomed 3(1):59–68Google Scholar
  15. Golub A, Matyshevska O, Prylutska S, Sysoyev V, Ped L, Kudrenko V, Radchenko E, Prylutskyy Yu, Scharff P, Braun T (2003) Fullerenes immobilized at silica surface: topology, structure and bioactivity. J Mol Liq 105(2–3):141–147. CrossRefGoogle Scholar
  16. Goodarzi S, Da Ros T, Conde J, Sefat F, Mozafari M (2017) Fullerene: biomedical engineers get to revisit an old friend. Mater Today 20(8):460–480. CrossRefGoogle Scholar
  17. Grynyuk I, Grebinyk S, Prylutska S, Mykhailova A, Franskevich D, Matyshevska O, Schütze C, Ritter U (2013) Photoexcited fullerene C60 disturbs prooxidant-antioxidant balance in leukemic L1210 cells. Materialwissenschaft und Werkstofftechnik 44(2–3):139–143. CrossRefGoogle Scholar
  18. Hirsch J (2006) An anniversary for cancer chemotherapy. JAMA 296:1518–1520. CrossRefGoogle Scholar
  19. Horibe S, Matsuda A, Tanahashi T, Inoue J, Kawauchi S, Mizuno S, Ueno M, Takahashi K, Maeda Y, Maegouchi T, Murakami Y, Yumoto R, Nagai J, Takano M (2015) Cisplatin resistance in human lung cancer cells is linked with dysregulation of cell cycle associated proteins. Life Sci 124:31–40. CrossRefGoogle Scholar
  20. Imai K, Shirai T, Akiyama M, Hashimoto Y, Zennyu M, Yoshida T, Honda Y, Nishikawa T (2018) Effects of C60 fullerene on cell differentiation and cell viability of mouse iPS cells. Nano Biomed 10(1):15–20. Google Scholar
  21. Indeglia PA, Georgieva AT, Krishna VB, Martyniuk CH, Bonzongo J-CJ (2018) Toxicity of functionalized fullerene and fullerene synthesis chemicals. Chemosphere 207:1–9. CrossRefGoogle Scholar
  22. Ji ZQ, Sun H, Wang H, Xie Q, Liu Y, Wang Z (2006) Biodistribution and tumor uptake of C60(OH)x in mice. J Nanopart Res 8:53–63. CrossRefGoogle Scholar
  23. Kang S, Zhou GQ, Yang P, Liu Y, Sun BY, Huynh T, Meng H, Zhao LN, Xing GM, Chen CY, Zhao YL, Zhou RH (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci USA 109:15431–15436. CrossRefGoogle Scholar
  24. Kellar A, Egan C, Morris D (2015) Preclinical murine models for lung cancer: clinical trial applications. Biomed Res Int 2015:621324. CrossRefGoogle Scholar
  25. Ki K-D, Lee J-M, Lee S-K, Tong S-Y, Huh C-Y, Ryu J-K, Kim K-Y (2010) Pulmonary toxicity after a quick course of combinatorial vincristine, bleomycin, and cisplatin neoadjuvant chemotherapy in cervical cancer. J Korean Med Sci 25:240–244. CrossRefGoogle Scholar
  26. Korolovych VF, Ledin PA, Stryutsky A, Shevchenko VV, Sobko O, Xu W, Bulavin LA, Tsukruk VV (2016) Assembly of amphiphilic hyperbranched polymeric ionic liquids in aqueous media at different pH and ionic strength. Macromolecules 49(22):8697–8710. CrossRefGoogle Scholar
  27. Korolovych VF, Erwin A, Stryutsky A, Lee H, Heller WT, Shevchenko VV, Bulavin LA, Tsukruk VV (2018) Thermally responsive hyperbranched poly(ionic liquid)s: assembly and phase transformations. Macromolecules 51(13):4923–4937. CrossRefGoogle Scholar
  28. Li W, Chen C, Ye C, Wei T, Zhao Y, Lao F, Chen Z, Meng H, Gao Y, Yuan H, Xing G, Zhao F, Chai Z, Zhang X, Yang F, Han D, Tang X, Zhang Y (2008) The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 19:145102. CrossRefGoogle Scholar
  29. Liang X-J, Meng H, Wang Y, He H, Meng J, Lu J, Wang PC, Zhao Y, Gao X, Sun B, Chen C, Xing G, Shen D, Gottesman MM, Wu Y, Yin J, Jia L (2010) Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. PNAS 107:7449–7454. CrossRefGoogle Scholar
  30. Lu F, Haque SA, Yang ST, Luo PG, Gu L, Kitaygorodskiy A, Li H, Lacher S, Sun Y-P (2009) Aqueous compatible fullerene-doxorubicin conjugates. J Phys Chem C 113(41):17768–17773. CrossRefGoogle Scholar
  31. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207. CrossRefGoogle Scholar
  32. Marchetti S (2013) Effect of selected ABC-drug transporters on anticancer drug disposition in vitro and in vivo. Dissertation, Utrecht UniversityGoogle Scholar
  33. Meng H, Xing GM, Sun BY, Zhao F, Lei H, Li W, Song Y, Chen Z, Yuan H, Wang XX, Long J, Chen CY, Liang XJ, Zhang N, Chai ZF, Zhao YL (2010) Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 4(5):2773–2783. CrossRefGoogle Scholar
  34. Min Y, Mao C-Q, Chen S, Ma G, Wang J, Liu Y (2012) Combating the drug resistance of cisplatin using a platinum prodrug based delivery system. Angew Chem Int Edit 51:6742–6747. CrossRefGoogle Scholar
  35. Nagata S, Suzuki J, Segawa K, Fujii T (2016) Exposure of phosphatidylserine on the cell surface. Cell Death Differ. 23(6):952–961. CrossRefGoogle Scholar
  36. Paraskar AS, Soni S, Chin KT, Chaudhuri P, Muto KW, Berkowitz J, Handlogten MW, Alves NJ, Bilgicer B, Dinulescu DM, Mashelkar RA, Sengupta S (2010) Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc Natl Acad Sci USA 107(28):12435–12440. CrossRefGoogle Scholar
  37. Prylutska SV, Skivka LM, Didenko GV, Prylutskyy YuI, Evstigneev MP, Potebnya GP, Panchuk RR, Stoika RS, Ritter U, Scharff P (2015) Complex of C60 fullerene with doxorubicin as a promising agent in antitumor therapy. Nanoscale Res Lett 10:499–506. CrossRefGoogle Scholar
  38. Prylutska S, Panchuk R, Gołuński G, Skivka L, Prylutskyy Yu, Hurmach V, Skorokhyd N, Borowik A, Woziwodzka A, Piosik J, Kyzyma O, Garamus V, Bulavin L, Evstigneev M, Buchelnikov A, Stoika R, Berger W, Ritter U, Scharff P (2017) C60 fullerene enhances cisplatin anticancer activity and overcomes tumor cells drug resistance. Nano Res 10(2):652–671. CrossRefGoogle Scholar
  39. Prylutskyy YuI, Cherepanov VV, Evstigneev MP, Kyzyma OA, Petrenko VI, Styopkin VI, Bulavin LA, Davidenko NA, Wyrzykowski D, Woziwodzka A, Piosik J, Kaźmierkiewicz R, Ritter U (2015) Structural self-organization of C60 and cisplatin in physiological solution. Phys Chem Chem Phys 17(39):26084–26092. CrossRefGoogle Scholar
  40. Prylutskyy Yu, Bychko A, Sokolova V, Prylutska S, Evstigneev M, Rybalchenko V, Epple M, Scharff P (2016) Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and its uptake by HeLa cells. Mater Sci Eng C 59:398–403. CrossRefGoogle Scholar
  41. Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett 7(3):614–619. CrossRefGoogle Scholar
  42. Rabik CA, Fishel ML, Holleran JL, Kasza K, Kelley MR, Egorin MJ, Dolan ME (2008) Enhancement of cisplatin [cis-diammine dichloroplatinum (II)] cytotoxicity by O 6-benzylguanine involves endoplasmic reticulum stress. J Pharmacol Exp Ther 327(2):442–452. CrossRefGoogle Scholar
  43. Riihimäki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J, Hemminki K (2014) Metastatic sites and survival in lung cancer. Lung Cancer 86(1):78–84. CrossRefGoogle Scholar
  44. Rodriguez LG, Wu X, Guan JL (2005) Wound-healing assay. In: Guan JL (ed) Cell migration. Methods in molecular biology™, vol 294. Humana Press, New YorkGoogle Scholar
  45. Russ KA, Elvati P, Parsonage TL, Dews A, Jarvis JA, Ray M, Schneider B, Smith PJS, Williamson PTF, Violi A, Philbert MA (2016) C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages. Nanoscale 8(7):4134–4144. CrossRefGoogle Scholar
  46. Sarin N, Engel F, Kalayda GV, Mannewitz M, Cinatl J Jr, Rothweiler F, Michaelis M, Saafan H, Ritter CA, Jaehde U, Frotschl R (2017) Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest. PLoS One 12(7):1–26. (e0181081) CrossRefGoogle Scholar
  47. Scharff P, Carta-Abelmann L, Siegmund C, Matyshevska OP, Prylutska SV, Koval TV, Golub AA, Yashchuk VM, Kushnir KM, Prylutskyy YuI (2004) Effect of X-ray and UV irradiation of the C60 fullerene aqueous solution on biological samples. Carbon 42(5–6):1199–1201. CrossRefGoogle Scholar
  48. Shah MA, Schwartz GK (2001) Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res 7(8):2168–2181Google Scholar
  49. Skamrova GB, Laponogov IV, Buchelnikov AS, Shckorbatov YG, Prylutska SV, Ritter U, Prylutskyy YI, Evstigneev MP (2014) Interceptor effect of C60 fullerene on the in vitro action of aromatic drug molecules. Eur Biophys J 43(6–7):265–276. CrossRefGoogle Scholar
  50. Straface E, Natalini B, Monti D, Franceschi C, Schettini G, Bisaglia M, Fumelli C, Pincelli C, Pellicciari R, Malorni W (1999) C3-fullero-tris-methanodicarboxylic acid protects epithelial cells from radiation-induced anoikia by influencing cell adhesion ability. FEBS Lett 454(3):335–340CrossRefGoogle Scholar
  51. Trpkovic A, Todorovic-Markovic B, Trajkovic V (2012) Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress. Arch Toxicol 86(12):1809–1827. CrossRefGoogle Scholar
  52. Velma V, Dasari SR, Tchounwou PB (2016) Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights 11:113–121. CrossRefGoogle Scholar
  53. Wagstaff AJ, Brown SD, Holden MR, Craig GE, Plumb JA, Brown RE, Schreiter N, Chrzanowski W, Wheate NJ (2012) Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields. Inorg Chim Acta 393:328–333. CrossRefGoogle Scholar
  54. Wang L, Xiang S, Williams KA, Dong H, Bai W, Nicosia SV, Khochbin S, Bepler G, Zhang X (2012) Depletion of HDAC6 enhances cisplatin-induced DNA damage and apoptosis in non-small cell lung cancer cells. PLoS One 7(9):e44265. CrossRefGoogle Scholar
  55. Xu X, Li R, Ma M, Wang X, Wang Y, Zou H (2012) Multidrug resistance protein P glycoprotein does not recognize nanoparticle C60: experiment and modeling. Soft Matter 8:2915–2923. CrossRefGoogle Scholar
  56. Yadav BC, Kumar R (2008) Structure, properties and applications of fullerenes. Int J Nanotechnol Appl 2(1):15–24Google Scholar
  57. Zakharian TY, Seryshev A, Sitharaman B, Gilbert BE, Knight V, Wilson LJ (2005) A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc 127(36):12508–12509. CrossRefGoogle Scholar
  58. Zhang P, Gao WY, Turner S, Ducatman BS (2003) Gleevec (STI-571) inhibits lung cancer cell growth (A549) and potentiates the cisplatin effect in vitro. Mol Cancer 2:1. CrossRefGoogle Scholar
  59. Zhu J, Ji Z, Wang J, Sun R, Zhang X, Gao Y, Sun H, Liu Y, Wang Z, Li A, Ma J, Wang T, Jia G, Gu Y (2008) Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)x. Small 4(8):1168–1175. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Svitlana Prylutska
    • 1
  • Iryna Grynyuk
    • 1
  • Tetiana Skaterna
    • 2
  • Iryna Horak
    • 2
  • Anna Grebinyk
    • 1
    • 3
  • Liudmyla Drobot
    • 2
  • Olga Matyshevska
    • 1
    • 2
  • Anton Senenko
    • 4
  • Yuriy Prylutskyy
    • 1
  • Anton Naumovets
    • 4
  • Uwe Ritter
    • 5
  • Marcus Frohme
    • 3
    Email author
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Palladin Institute of Biochemistry, NAS of UkraineKyivUkraine
  3. 3.Technical University of Applied Sciences WildauWildauGermany
  4. 4.Institute of Physics of the NAS of UkraineKyivUkraine
  5. 5.Institute of Chemistry and BiotechnologyTechnical University of IlmenauIlmenauGermany

Personalised recommendations