Skip to main content
Log in

Peroxisome proliferator-activated receptor α attenuates high-cholesterol diet-induced toxicity and pro-thrombotic effects in mice

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor α (PPARα) is involved in the regulation of fatty acid and cholesterol metabolism. A high-cholesterol (HC) diet increases the risk of developing cardiovascular diseases (CVD); however, it is unclear whether the toxic effects of cholesterol involve changes in thrombotic factor expression, and whether PPARα is necessary for such effects. To investigate this possibility, we fed a HC diet to wild-type (WT) and Ppara-null mice and measured cholesterol and triglyceride contents, liver histology, serum/plasma levels of coagulation factors, hepatic expression of the coagulation factors, liver/serum sulfatide levels, hepatic sulfatide metabolism, hepatic expression of lipid transporters, and hepatic oxidative stress and its relating enzymes. In Ppara-null mice, the HC diet caused triglyceride accumulation and exacerbated inflammation and oxidative stress in liver, increased levels of coagulation factors, including tissue factor, plasminogen activator inhibitor-1 and carboxypeptidase B2 in blood and liver, and decreased levels of anti-thrombotic sulfatides in serum and liver. These changes were much less marked in WT mice. These findings imply that cholesterol overload exerts its toxic effects at least in part by enhancing thrombosis, secondary to abnormal hepatic lipid metabolism, inflammation, and oxidative stress. Moreover, we reveal for the first time that PPARα can attenuate these toxic effects by transcriptional regulation of coagulation factors and sulfatides, in addition to its known effects of controlling lipid homeostasis and suppressing inflammation and oxidative stress. Therapies aimed at activating PPARα might prevent HC diet-induced CVD through modulating various pro- and anti-thrombotic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abela GS, Picon PD, Friedl SE, Gebara OC, Miyamoto A, Federman M, Tofler GH, Muller JE (1995) Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model. Circulation 91:776–784

    Article  CAS  PubMed  Google Scholar 

  • Ansquer JC, Foucher C, Rattier S, Taskinen MR, Steiner G, DAIS Investigators (2005) Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS). Am J Kidney Dis 45:485–493

    Article  CAS  PubMed  Google Scholar 

  • Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, Tyndale R, Inaba T, Kalow W, Gelboin HV, Gonzalez FJ (1989) Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem 264:10388–10395

    CAS  PubMed  Google Scholar 

  • Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ (1998) Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 273:5678–5684

    Article  CAS  PubMed  Google Scholar 

  • Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437

    Article  CAS  PubMed  Google Scholar 

  • Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S, RENAAL Study Investigators (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, Turk J, Semenkovich CF (2005) “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1:309–322

    Article  CAS  PubMed  Google Scholar 

  • Clemenz M, Frost N, Schupp M, Caron S, Foryst-Ludwig A, Böhm C, Hartge M, Gust R, Staels B, Unger T, Kintscher U (2008) Liver-specific peroxisome proliferator-activated receptor alpha target gene regulation by the angiotensin type 1 receptor blocker telmisartan. Diabetes 57:1405–1413

    Article  CAS  PubMed  Google Scholar 

  • Davis TM, Ting R, Best JD, Donoghoe MW, Drury PL, Sullivan DR, Jenkins AJ, O’Connell RL, Whiting MJ, Glasziou PP, Simes RJ, Kesäniemi YA, Gebski VJ, Scott RS, Keech AC, Fenofibrate Intervention and Event Lowering in Diabetes Study investigators (2011) Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 54:280–290

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves CS, Li C, Malik P, Tahara SM, Kalra VK (2015) Peroxisome proliferator-activated receptor-α-mediated transcription of miR-301a and miR-454 and their host gene SKA2 regulates endothelin-1 and PAI-1 expression in sickle cell disease. Biosci Rep 35:e00275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamsten A, de Faire U, Walldius G, Dahlén G, Szamosi A, Landou C, Blombäck M, Wiman B (1987) Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 2:3–9

    Article  CAS  PubMed  Google Scholar 

  • Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 90:420–426

    Article  CAS  PubMed  Google Scholar 

  • Harada M, Kamijo Y, Nakajima T, Hashimoto K, Yamada Y, Shimojo H, Gonzalez FJ, Aoyama T (2016) Peroxisome proliferator-activated receptor α-dependent renoprotection of murine kidney by irbesartan. Clin Sci (Lond) 130:1969–1981

    Article  CAS  Google Scholar 

  • Hashimoto K, Kamijo Y, Nakajima T, Harada M, Higuchi M, Ehara T, Shigematsu H, Aoyama T (2012) PPARα activation protects against anti-Thy1 nephritis by suppressing glomerular NF-κB signaling. PPAR Res 2012:976089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Tanaka N, Guo R, Lu Y, Nakajima T, Gonzalez FJ, Aoyama T (2017) PPARα protects against trans-fatty-acid-containing diet-induced steatohepatitis. J Nutr Biochem 39:77–85

    Article  CAS  PubMed  Google Scholar 

  • Hunt MC, Yang YZ, Eggertsen G, Carneheim CM, Gåfvels M, Einarsson C, Alexson SE (2000) The peroxisome proliferator-activated receptor alpha (PPARalpha) regulates bile acid biosynthesis. J Biol Chem 275:28947–28953

    Article  CAS  PubMed  Google Scholar 

  • Ichino K, Okazaki M, Usami S, Oguchi K (1997) Involvement of enhanced coagulation and fibrinolysis system in induction of atherosclerosis in hyperlipidemic rabbits fed on a high cholesterol diet. In Vivo 11:115–123

    CAS  PubMed  Google Scholar 

  • Kamijo Y, Hora K, Tanaka N, Usuda N, Kiyosawa K, Nakajima T, Gonzalez FJ, Aoyama T (2002) Identification of functions of peroxisome proliferator-activated receptor alpha in proximal tubules. J Am Soc Nephrol 13:1691–1702

    Article  CAS  PubMed  Google Scholar 

  • Kamijo Y, Hora K, Kono K, Takahashi K, Higuchi M, Ehara T, Kiyosawa K, Shigematsu H, Gonzalez FJ, Aoyama T (2007) PPARalpha protects proximal tubular cells from acute fatty acid toxicity. J Am Soc Nephrol 18:3089–3100

    Article  CAS  PubMed  Google Scholar 

  • Kamijo Y, Wang L, Matsumoto A, Nakajima T, Hashimoto K, Higuchi M, Kyogashima M, Aoyama T, Hara A (2012) Long-term improvement of oxidative stress via kidney transplantation ameliorates serum sulfatide levels. Clin Exp Nephrol 16:959–967

    Article  CAS  PubMed  Google Scholar 

  • Kanbe H, Kamijo Y, Nakajima T, Tanaka N, Sugiyama E, Wang L, Fang ZZ, Hara A, Gonzalez FJ, Aoyama T (2014) Chronic ethanol consumption decreases serum sulfatide levels by suppressing hepatic cerebroside sulfotransferase expression in mice. Arch Toxicol 88:367–379

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Elsayed YA, Namoto M, Nakagawa K, Sueishi K (1996) Enhanced expression of tissue factor activity in the atherosclerotic aortas of cholesterol-fed rabbits. Thromb Res 82:335–347

    Article  CAS  PubMed  Google Scholar 

  • Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421–424

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Nakajima T, Kamijo Y, Tanaka N, Wang L, Hara A, Sugiyama E, Tanaka E, Gonzalez FJ, Aoyama T (2012) Hepatic cerebroside sulfotransferase is induced by PPARα activation in mice. PPAR Res 2012:174932

  • Kohler HP, Grant PJ (2000) Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 342:1792–1801

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Kimura T, Yazaki M, Tanaka N, Yang Y, Nakajima T, Horiuchi A, Fang ZZ, Joshita S, Matsumoto A, Umemura T, Tanaka E, Gonzalez FJ, Ikeda S, Aoyama T (2015) Steatogenesis in adult-onset type II citrullinemia is associated with down-regulation of PPARα. Biochim Biophys Acta 1852:473–481

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernandez-Salguero PM, Westphal H, Gonzalez FJ (1995) Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15:3012–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre P, Chinetti G, Fruchart JC, Staels B (2006) Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 116:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Hu R, Kamijo Y, Nakajima T, Aoyama T, Inoue T, Node K, Kannagi R, Kyogashima M, Hara A (2007) Establishment of a quantitative, qualitative, and high-throughput analysis of sulfatides from small amounts of sera by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Anal Biochem 362:1–7

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Marx N, Mackman N, Schönbeck U, Yilmaz N, Hombach V, Libby P, Plutzky J (2001) PPARalpha activators inhibit tissue factor expression and activity in human monocytes. Circulation 103:213–219

    Article  CAS  PubMed  Google Scholar 

  • Masuda Y, Saotome D, Takada K, Sugimoto K, Sasaki T, Ishii H (2012) Peroxisome proliferator-activated receptor-alpha agonists repress expression of thrombin-activatable fibrinolysis inhibitor by decreasing transcript stability. Thromb Haemost 108:74–85

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, Honda M, Zen Y, Nakanuma Y, Miyamoto K, Kaneko S (2007) Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46:1392–1403

    Article  CAS  PubMed  Google Scholar 

  • Mosnier LO, Bouma BN (2006) Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis. Arterioscler Thromb Vasc Biol 26:2445–2453

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T, Kamijo Y, Tanaka N, Sugiyama E, Tanaka E, Kiyosawa K, Fukushima Y, Peters JM, Gonzalez FJ, Aoyama T (2004) Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. Hepatology 40:972–980

    Article  CAS  PubMed  Google Scholar 

  • Nazıroğlu M, Güler M, Özgül C, Saydam G, Küçükayaz M, Sözbir E (2014) Apple cider vinegar modulates serum lipid profile, erythrocyte, kidney, and liver membrane oxidative stress in ovariectomized mice fed high cholesterol. J Membr Biol 247:667–673

    Article  CAS  PubMed  Google Scholar 

  • Okiyama W, Tanaka N, Nakajima T, Tanaka E, Kiyosawa K, Gonzalez FJ, Aoyama T (2009) Polyenephosphatidylcholine prevents alcoholic liver disease in PPARalpha-null mice through attenuation of increases in oxidative stress. J Hepatol 50:1236–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsouris D, Reddy JK, Müller M, Kersten S (2006) Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology 147:1508–1516

    Article  CAS  PubMed  Google Scholar 

  • Steffel J, Lüscher TF, Tanner FC (2006) Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation 113:722–731

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Moriya K, Kiyosawa K, Koike K, Gonzalez FJ, Aoyama T (2008) PPARalpha activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. J Clin Invest 118:683–694

    PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Kume S, Araki S, Isshiki K, Chin-Kanasaki M, Sakaguchi M, Sugimoto T, Koya D, Haneda M, Kashiwagi A, Maegawa H, Uzu T (2011) Fenofibrate, a PPARα agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int 79:871–882

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Aoyama T, Kimura S, Gonzalez FJ (2017) Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther 179:142–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toschi V, Gallo R, Lettino M, Fallon JT, Gertz SD, Fernández-Ortiz A, Chesebro JH, Badimon L, Nemerson Y, Fuster V, Badimon JJ (1997) Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 95:594–599

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela R, Espinosa A, González-Mañán D, D’Espessailles A, Fernández V, Videla LA, Tapia G (2012) N-3 long-chain polyunsaturated fatty acid supplementation significantly reduces liver oxidative stress in high fat induced steatosis. PLoS One 7:e46400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 275:22293–22299

    Article  CAS  PubMed  Google Scholar 

  • Wojewodzka-Zelezniakowicz M, Gromotowicz-Poplawska A, Kisiel W, Konarzewska E, Szemraj J, Ladny JR, Chabielska E (2017) Angiotensin-converting enzyme inhibitors attenuate propofol-induced pro-oxidative and antifibrinolytic effect in human endothelial cells. J Renin Angiotensin Aldosterone Syst 18:1470320316687197

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye JM, Doyle PJ, Iglesias MA, Watson DG, Cooney GJ, Kraegen EW (2001) Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation. Diabetes 50:411–417

    Article  CAS  PubMed  Google Scholar 

  • Yusuf S, Teo K, Anderson C, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, Telmisartan randomised assessment study in ACE intolerant subjects with cardiovascular disease (TRANSCEND) investigators (2008) Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet 372:1174–1183

    Article  CAS  PubMed  Google Scholar 

  • Yuzhe H, Kamijo Y, Hashimoto K, Harada M, Kanno T, Sugiyama E, Kyogashima M, Oguchi T, Nakajima T, Kanno Y, Aoyama T (2015) Serum sulfatide abnormality is associated with increased oxidative stress in hemodialysis patients. Hemodial Int 19:429–438

    Article  PubMed  Google Scholar 

  • Zou X, Gao Y, Ruvolo VR, Gardner TL, Ruvolo PP, Brown RE (2011) Human glycolipid transfer protein gene (GLTP) expression is regulated by Sp1 and Sp3: involvement of the bioactive sphingolipid ceramide. J Biol Chem 286:1301–1311

    Article  CAS  PubMed  Google Scholar 

  • Zúñiga J, Cancino M, Medina F, Varela P, Vargas R, Tapia G, Videla LA, Fernández V (2011) N-3 PUFA supplementation triggers PPAR-α activation and PPAR-α/NF-κB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury. PLoS One 6:e28502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mark Cleasby, PhD, from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This study was supported by Grants-in-Aid for Scientific Research (KAKENHI) in Japan (nos. 25460329 and 18K08204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Kamijo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Harada, M., Kamijo, Y. et al. Peroxisome proliferator-activated receptor α attenuates high-cholesterol diet-induced toxicity and pro-thrombotic effects in mice. Arch Toxicol 93, 149–161 (2019). https://doi.org/10.1007/s00204-018-2335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2335-4

Keywords

Navigation