Archives of Toxicology

, Volume 92, Issue 5, pp 1703–1715 | Cite as

Atorvastatin decreases steroid production in H295R cells and in major endocrine tissues of male rats

  • Cecilie Hurup Munkboel
  • Michelle L. K. Baake
  • Bjarne Styrishave
Molecular Toxicology


Obesity is increasing worldwide, and since obesity is associated with dyslipidemia, the consumption of cholesterol-lowering pharmaceuticals has increased. The aim of this study was therefore to study potential endocrine disrupting effects of one of the world’s most frequently prescribed drugs, the cholesterol-lowering drug, atorvastatin (ATO) in vitro using the H295R steroidogenesis assay and in vivo using male Sprague–Dawley rats. We analyzed all major steroids in the mammalian steroidogenesis using liquid chromatography–tandem mass spectrometry (LC–MS/MS). In vitro, ATO significantly decreased all steroids in the H295R steroidogenesis at concentrations close to human plasma Cmax values, with an IC50 value for testosterone of 0.093 ± 0.033 µM. Additionally, we determined steroid hormone levels in testis, adrenals, brain and plasma from rats after 14 days of exposure to three therapeutically relevant doses of ATO and observed pronounced decreasing steroid levels in particular in testis and adrenals but also in brain and plasma. In testis, all major steroidogenic enzymes were up-regulated, indicating autocrine and/or paracrine compensation for the decrease in steroid production by this tissue. In adrenals, StAR and CYP11A1 gene expression were decreased, whereas little effects were observed in the brain. Furthermore, we analyzed plasma LH and ACTH levels to investigate feedback via the PT and HPA axes. No effects were observed on LH levels, indicating little compensation via the PT axis. In contrast, ACTH levels increased during ATO exposure, indicating that the HPA axis to some extend compensated for the decrease in adrenal steroid production. Overall, ATO exerted pronounced effects on steroid production both in vitro and in vivo at therapeutically relevant doses. This clearly demonstrates the high potency of ATO to affect steroid homeostasis during therapeutic treatment. Further clinical and epidemiological studies should be conducted to investigate the relevance of these observations in patients treated with cholesterol-lowering pharmaceuticals.


Statins Endocrine disrupting pharmaceuticals Steroid analysis Androgens Corticosteroids Progestagens ACTH 


  1. Abdel-Khalik J, Bjorklund E, Hansen M (2013) Simultaneous determination of endogenous steroid hormones in human and animal plasma and serum by liquid or gas chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 928:58–77CrossRefPubMedGoogle Scholar
  2. Al-Habsi AA, Masarsky A, Moon TW (2016) Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 199:87–96CrossRefPubMedGoogle Scholar
  3. Bonefeld BE, Elfving B, Wegener G (2008) Reference genes for normalization: a study of rat brain tissue. Synapse 62(4):302–309CrossRefPubMedGoogle Scholar
  4. Brien TG (1981) Human corticosteroid binding globulin. Clin Endocrinol 14:193–212CrossRefGoogle Scholar
  5. Corona G, Boddi V, Balercia G et al (2010) The effect of statin therapy on testosterone levels in subjects consulting for erectile dysfunction. J Sex Med 7:1547–1556CrossRefPubMedGoogle Scholar
  6. Danish Medicines Agency (2016) PRODUKT RESUMÉ for Atorvastatin “Actavis”. Film coated tablets 10 mg, 20 mg and 40 mg. Accessed 13 Sept 2017. Last updated 14 Apr 2016
  7. Dobs AS, Schrott H, Davidson MH et al (2000) Effects of high-dose simvastatin on adrenal and gonadal steroidogenesis in men with hypercholesterolemia. Metabolism 49(9):1234–1238CrossRefPubMedGoogle Scholar
  8. Feingold KR, Grunfeld C (2015) Obesity and dyslipidemia. Endotext (Internet). Accessed 13 Sept 2017. Last updated 12 June 2015
  9. Food and Drug Administration (2017) Drugs@FDA: FDA approved drug products. Labelling for LIPITOR® (atorvastatin calcium) tablets, for oral use. Accessed 13 Sept 2017. Last updated 23 June 2017
  10. Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (2005) Guidance for industry estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Accessed 13 Sept 2017
  11. Gao L, Zhao FL, Li SC (2012) Statin is a reasonable treatment option for patients with polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Axp Clin Endocrinol Diabetes 120:367–375CrossRefGoogle Scholar
  12. Golomb BA, Evans MA (2008) Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs 8:373–418CrossRefPubMedPubMedCentralGoogle Scholar
  13. Guldvang A, Hansen CH, Weisser JJ et al (2015) Simvastatin decreases steroid production in the H295R cell line and decreases steroids and FSH in female rats. Reprod Toxicol 58:174–183CrossRefPubMedGoogle Scholar
  14. Hadley ME, Levine JE (2006) Endocrinology. Pearson Practice Hall, New JerseyGoogle Scholar
  15. Hall SA, Page ST, Travison TG et al (2007) Do statins affect androgen levels in men? Results from the Boston area community health survey. Cancer Epidemiol Biomark Prev 16(8):1587–1594CrossRefGoogle Scholar
  16. Hammond GL (1990) Molecular properties of corticosteroid binding globulin and the sex-steroid binding proteins. Endocr Rev 11:65–79CrossRefPubMedGoogle Scholar
  17. Hampl R, Kubátová J, Stárka L (2016) Steroids and endocrine disruptors—history, recent state of art and open questions. J Steroid Biochem Mol Biol 155:217–223CrossRefPubMedGoogle Scholar
  18. Hansen CH, Larsen LW, Sørensen AM, Halling-Sørensen B, Styrishave B (2017) The six most widely used selective serotonin reuptake inhibitors decrease androgens and increase estrogens in the H295R cell line. Toxicol In Vitro 41:1–11CrossRefPubMedGoogle Scholar
  19. Hapon M, Gamarra-Luques C, Jahn GA (2010) Short term hypothyroidism affects ovarian function in the cycling rat. Reprod Biol Endocrinol 8(1):14CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hecker M, Newsted JL, Murphy MB et al (2006) Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: hormone production. Toxicol Appl Pharmacol 217(1):114–124CrossRefPubMedGoogle Scholar
  21. Houk CP, Pearson EJ, Martinelle N et al (2004) Feedback inhibition of steroidogenic acute regulatory protein expression in vitro and in vivo by androgens. Endocrinology 145(3):1269–1275CrossRefPubMedGoogle Scholar
  22. Hu L, Monteiro A, Johnston H, King P, O'Shaughnessy PJ (2007) Expression of Cyp21a1 and Cyp11b1 in the fetal mouse testis. Reproduction 134(4):585–591CrossRefPubMedGoogle Scholar
  23. IMS (2012) Institute for Healthcare Informatics. The use of medicines in the United States: review of 2011.
  24. IMS (2017) Institute for Healthcare Informatics. Medicines use and spending in the US. A review of 2016 and outlook to 2020.
  25. Izquierdo D, Foyouzi N, Kwintkiewicz J, Et al (2004) Mevastatin inhibits ovarian theca-interstitial cell proliferation and steroidogenesis. Fertil Steril 82(3):1193–1197CrossRefPubMedGoogle Scholar
  26. Kanat M, Serin E, Tunckale A et al (2009) A multi-center, open label, crossover designed prospective study evaluating the effects of lipid lowering treatment on steroid synthesis in patients with type 2 diabetes (MODEST study). J Endocrinol Invest 32(10):852–856CrossRefPubMedGoogle Scholar
  27. Kaya C, Pabuccu R, Cengiz SD et al (2010) Comparison of the effects of atorvastatin and simvastatin in women with polycystic ovary syndrome: a prospective, randomized study. Exp Clin Endocrinol Diabetes 118(3):161–166CrossRefPubMedGoogle Scholar
  28. Khodadadi M, Basavaiah S, Abediankenari S (2012) Effect of lithium chloride on the luteal steroidogenesis in gonadotropin-stimulated rat. Iran J Reprod Med 10:223–228PubMedPubMedCentralGoogle Scholar
  29. Klinefelter GR, Laskey JW, Amann RP (2014) Statin drugs markedly inhibit testosterone production by rat Leydig cells in vitro: implications for men. Reprod Toxicol 45:52–58CrossRefPubMedGoogle Scholar
  30. Kocum TH, Ozcan TI, Gen R et al (2009) Does atorvastatin affect androgen levels in men in the era of very-low LDL targeting therapy. Exp Clin Endocrinol Diabetes 117:60–63PubMedGoogle Scholar
  31. Koytchev R, Ozalp Y, Erenmemisoglu A et al. (2004) Bioequivalence study of atorvastatin tablets. Arzneimittelforschung 54(9A):573–577PubMedGoogle Scholar
  32. Kristensen DM, Mazaud-Guittot S, Gaudriault P et al (2016) Analgetic use—prevalence, biomonitoring and endocrine and reproductive effects. Nat Rev Endocrinol 12:381–393CrossRefPubMedGoogle Scholar
  33. Kristensen DM, Desdoits-Lethimonier C, Mackey AL, Dalgaard MD, De Masi F, Munkbøl CH, Styrishave B, Antignac J-P, Le Bizec B, Platel C, Hay-Schmidt A, Jensen TK, Lesné L, Mazaud-Guittot S, Kristiansen K, Brunak S, Kjaer M, Juul A, Jégou B (2018) Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism. Proc Natl Acad Sci 115(4):E715–E724CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kusters DM, Lahsinoui HH, van de Post JAM et al (2012) Statin use during pregnancy: a systematic review and meta-analysis. Expert Rev Cardiovasc Ther 10(3):363–378CrossRefPubMedGoogle Scholar
  35. Miller WL, Auchus RJ (2011) The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 32(1):81–151CrossRefPubMedGoogle Scholar
  36. Morton S, Thangaratinam S (2013) Statins in pregnancy. Curr Opin Obstet Gynecol 25:433–440CrossRefPubMedGoogle Scholar
  37. Munkboel CH, Larsen LW, Weisser JJ et al (2018) Sertraline suppresses testis and adrenal steroid production and steroidogenic gene expression while increasing LH in plasma of male rats resulting in compensatory hypogonadism. Tox Sci. CrossRefGoogle Scholar
  38. Nasiadka A, Clark MD (2012) Zebrafish breeding in the laboratory environment. ILAR J 53(2):161–168CrossRefPubMedGoogle Scholar
  39. O’Brien J, Wilson I, Orton T et al (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267(17):5421–5426CrossRefPubMedGoogle Scholar
  40. OECD (2011) Test no. 456: H295R steroidogenesis assay. OECD Publishing, ParisCrossRefGoogle Scholar
  41. Ortega I, Cress AB, Wong DH et al (2012) Simvastatin reduces steroidogenesis by inhibiting Cyp17a1 gene expression in rat ovarian theca-interstitial cells. Biol Reprod 86(1):1–9CrossRefPubMedGoogle Scholar
  42. Rainey WE, Bird IM, Sawetawan C, Hanley NA, McCarthy JL, McGee EA, Wester R, Mason JI (1993) Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids. J Clin Endocrinol Metab 77(3):731–737PubMedGoogle Scholar
  43. Røste LS, Taubøll E, Isojarvi JI et al (2002) Effects of chronic valproate treatment on reproductive endocrine hormones in female and male Wistar rats. Reprod Toxicol 16:767–773CrossRefGoogle Scholar
  44. Sanderson JT, Boerma J, Lansbergen GWA et al (2002) Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicol Appl Pharmacol 182:44–54CrossRefPubMedGoogle Scholar
  45. Santini SA, Carrozza C, Lulli P et al (2003) Atorvastatin treatment does not affect gonadal and adrenal hormones in type 2 diabetes patients with mild to moderate hypercholesterolemia. J Atheroscler Thromb 10(3):160–164CrossRefPubMedGoogle Scholar
  46. Sathyapalan T, Kilpatrick ES, Coady AM et al (2009) The effect of atorvastatin in patients with polycystic ovary syndrome: a randomized double-blind placebo-controlled study. J Clin Endocrinol Metab 94(1):103–108CrossRefPubMedGoogle Scholar
  47. Sathyapalan T, Smith KA, Kilpatrick ES et al (2012) Atorvastatin therapy decreases androstenedione and dehydroepiandrosterone sulphate concentrations in patients with polycystic ovary syndrome: randomized controlled study. Ann Clin Biochem 49(1):80–85CrossRefPubMedGoogle Scholar
  48. Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19(1):117–125CrossRefPubMedGoogle Scholar
  49. Schooling CM, Yeung SLA, Freeman G et al (2013) The effect of statins on testosterone in men and women, a systematic review and meta-analysis of randomized controlled trials. BMC Med 11:57CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shi J, Jiang B, Qiu Y et al. (2013) PGC1a plays a critical role in TWEAK–induced cardiac dysfunction. PLoS ONE 8(1):e54054CrossRefPubMedPubMedCentralGoogle Scholar
  51. Silverthorn DU, Johnson BR (2013) Human physiology: an integrated approach. Pearson/Benjamin Cummings, San FranciscoGoogle Scholar
  52. Sokalska A, Stanley SD, Villanueva JA et al (2014) Comparison of effects of different statins on growth and steroidogenesis of rat ovarian theca-interstitial cells. Biol Reprod 90(2):44CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sørensen AM, Hansen CH, Bonomo S et al (2016) Enantioselective endocrine disrupting effects of omeprazole studied in the H295R cell assay and by molecular modeling. Toxicol In Vitro 34:71–80CrossRefPubMedGoogle Scholar
  54. Staels B, Hum DW, Miller WL (1993) Regulation of steroidogenesis in NCI-H295 cells: a cellular model of the human fetal adrenal. Mol Endocrinol 7(3):423–433PubMedGoogle Scholar
  55. Stanworth RD, Kapoor D, Channer KS et al (2009) Statin therapy is associated with lower total but not bioavailable or free testosterone in men with type 2 diabetes. Diabetes Care 32(4):541–546CrossRefPubMedGoogle Scholar
  56. Taubøll E, Isojärvi JIT, Harbo HF et al (1999) Long-term valproate treatment induces changes in ovarian morphology and serum sex steroid hormone levels in female Wistar rats. Seizure 8:490–493CrossRefPubMedGoogle Scholar
  57. The Medicines and Healthcare Products Regulatory Agency (2011) Atorvastatin 10 mg, film coated tablets Atorvastatin 20 mg, film coated tablets Atorvastatin 40 mg, film coated tablets Atorvastatin 80 mg, film coated tablets. Cited 15 Sept 2017.
  58. Toberts JA, Bell GD, Birtwell J et al (1982) Cholesterol-lowering effect of mevinolin, an inhibitor of 3-hydroxy-3-methylglytaryl-coenzyme A reductase, in healthy volunteers. J Clin Invest 69(4):913–919CrossRefGoogle Scholar
  59. Van Vliet AK, van Thiel GC, Naaktgeboren N et al (1996) Vastatins have a distinct effect on sterol synthesis and progesterone secretion in human granulosa cells in vitro. Biochem Biophys Acta 1301(3):237–241CrossRefPubMedGoogle Scholar
  60. Walker WH (2011) Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis 1(2):116–120CrossRefPubMedPubMedCentralGoogle Scholar
  61. Weisser JJ, Hansen CH, Poulsen R et al (2016) Two simple cleanup methods combined with LC–MS/MS for quantification of steroid hormones in in vivo and in vitro assays. Anal Bioanal Chem 408:4883–4895CrossRefPubMedGoogle Scholar
  62. WHO (2014) Obesity—situation and trends. Cited 20 Oct 2014. text/en/
  63. Ye L, Zhao B, Hu G et al (2011) Inhibition of human and rat testicular steroidogenic enzyme activities by bisphenol A. Toxicol Lett 207(2):137–142CrossRefPubMedGoogle Scholar
  64. Zanfardino M, Spampanato C, De Cicco R et al (2013) Simvastatin reduces melanoma progression in a murine model. Int J Oncol 43:1763–1770CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zhang Z, Bu H, Gao Z et al (2010) The characteristics and mechanism of simvastatin loaded lipid nanoparticles to increase oral bioavailability in rats. Int J Pharm 394:147–153CrossRefPubMedGoogle Scholar
  66. Zhang L-D, Deng Q, Wang Z-M, Gao M, Wang L, Chong T, Li H-C (2013) Disruption of reproductive development in male rat offspring following gestational and lactational exposure to di-(2-ethylhexyl) phthalate and genistein. Biol Res 46(2):139–146CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations