New interplay between interstitial and alveolar macrophages explains pulmonary alveolar proteinosis (PAP) induced by indium tin oxide particles
Abstract
Occupational exposure to indium tin oxide (ITO) particles has been associated with the development of severe lung diseases, including pulmonary alveolar proteinosis (PAP). The mechanisms of this lung toxicity remain unknown. Here, we reveal the respective roles of resident alveolar (Siglec-Fhigh AM) and recruited interstitial (Siglec-Flow IM) macrophages contributing in concert to the development of PAP. In mice treated with ITO particles, PAP is specifically associated with IL-1α (not GM-CSF) deficiency and Siglec-Fhigh AM (not Siglec-Flow IM) depletion. Mechanistically, ITO particles are preferentially phagocytosed and dissolved to soluble In3+ by Siglec-Flow IM. In contrast, Siglec-Fhigh AM weakly phagocytose or dissolve ITO particles, but are sensitive to released In3+ through the expression of the transferrin receptor-1 (TfR1). Blocking pulmonary Siglec-Flow IM recruitment in CCR2-deficient mice reduces ITO particle dissolution, In3+ release, Siglec-Fhigh AM depletion, and PAP formation. Restoration of IL-1-related Siglec-Fhigh AM also prevented ITO-induced PAP. We identified a new mechanism of secondary PAP development according to which metal ions released from inhaled particles by phagocytic IM disturb IL-1α-dependent AM self-maintenance and, in turn, alveolar clearance.
Keywords
Tissue-resident macrophages Recruited macrophages Alveolar macrophages Inhaled particles Indium Interleukin-1αNotes
Acknowledgements
This work was funded by the Actions de Recherche Concertées, Fédération Wallonie Bruxelles (ARC 09/14–021), Fonds de la Recherche Scientifique (FNRS, PAPITO J.091.16), and a research Grant from Umicore (Belgium). F.H. is a Senior Research Associate with the FNRS, Belgium.
Compliance with ethical standards
Conflict of interest
The authors have no conflicting financial interests.
Supplementary material
References
- Badding MA, Schwegler-Berry D, Park JH, Fix NR, Cummings KJ, Leonard SS (2015) Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation. PLoS One 10(4):e0124368PubMedPubMedCentralCrossRefGoogle Scholar
- Barletta KE, Cagnina RE, Wallace KL, Ramos SI, Mehrad B, Linden J (2012) Leukocyte compartments in the mouse lung: distinguishing between marginated, interstitial, and alveolar cells in response to injury. J Immunol Methods 375(1–2):100–110PubMedCrossRefGoogle Scholar
- Becher B, Schlitzer A, Chen J et al (2014) High-dimensional analysis of the murine myeloid cell system. Nat Immunol 15(12):1181–1189PubMedCrossRefGoogle Scholar
- Bedoret D, Wallemacq H, Marichal T et al (2009) Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J Clin Invest 119(12):3723–3738PubMedPubMedCentralCrossRefGoogle Scholar
- Bomhard EM (2016) The toxicology of indium tin oxide. Environ Toxicol Pharmacol 45:282–294PubMedCrossRefGoogle Scholar
- Borie R, Danel C, Debray MP et al (2011) Pulmonary alveolar proteinosis. Eur Respir Rev 20(120):98–107PubMedCrossRefGoogle Scholar
- Byrne AJ, Maher TM, Lloyd CM (2016) Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease? Trends Mol Med 22(4):303–316PubMedCrossRefGoogle Scholar
- Carey B, Trapnell BC (2010) The molecular basis of pulmonary alveolar proteinosis. Clin Immunol 135(2):223–235PubMedPubMedCentralCrossRefGoogle Scholar
- Chen S, Yin R, Mutze K et al (2016) No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice. Part Fibre Toxicol 13(1):33PubMedPubMedCentralCrossRefGoogle Scholar
- Cummings KJ, Donat WE, Ettensohn DB, Roggli VL, Ingram P, Kreiss K (2010) Pulmonary alveolar proteinosis in workers at an indium processing facility. Am J Respir Crit Care Med 181(5):458–464PubMedCrossRefGoogle Scholar
- Cummings KJ, Nakano M, Omae K et al (2012) Indium lung disease. Chest 141(6):1512–1521PubMedCrossRefGoogle Scholar
- Cummings KJ, Virji MA, Trapnell BC, Carey B, Healey T, Kreiss K (2014) Early changes in clinical, functional, and laboratory biomarkers in workers at risk of indium lung disease. Ann Am Thorac Soc 11(9):1395–1403PubMedPubMedCentralCrossRefGoogle Scholar
- Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14(10):986–995PubMedPubMedCentralCrossRefGoogle Scholar
- Gibbings SL, Thomas SM, Atif SM et al (2017) Three unique interstitial macrophages in the murine lung at steady state. Am J Respir Cell Mol Biol 57(1):66–76PubMedCrossRefGoogle Scholar
- Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44(3):439–449PubMedCrossRefGoogle Scholar
- Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14(6):392–404PubMedCrossRefGoogle Scholar
- Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK (2016) New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol 17(1):34–40PubMedCrossRefGoogle Scholar
- Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964PubMedCrossRefGoogle Scholar
- Guilliams M, De Kleer I, Henri S et al (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210(10):1977–1992PubMedPubMedCentralCrossRefGoogle Scholar
- Guilliams M, Ginhoux F, Jakubzick C et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578PubMedPubMedCentralCrossRefGoogle Scholar
- Gwinn WM, Qu W, Shines CJ et al (2013) Macrophage solubilization and cytotoxicity of indium-containing particles in vitro. Toxicol Sci 135(2):414–424PubMedPubMedCentralCrossRefGoogle Scholar
- Gwinn WM, Qu W, Bousquet RW et al (2015) Macrophage solubilization and cytotoxicity of indium-containing particles as in vitro correlates to pulmonary toxicity in vivo. Toxicol Sci 144(1):17–26PubMedCrossRefGoogle Scholar
- Harvey RR, Virji MA, Edwards NT, Cummings KJ (2016) Comparing plasma, serum and whole blood indium concentrations from workers at an indium-tin oxide (ITO) production facility. Occup Environ Med 73(12):864–867PubMedPubMedCentralGoogle Scholar
- Hashimoto D, Chow A, Noizat C et al (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38(4):792–804PubMedCrossRefGoogle Scholar
- Hirata T, Bitterman PB, Mornex JF, Crystal RG (1986) Expression of the transferrin receptor gene during the process of mononuclear phagocyte maturation. J Immunol 136(4):1339–1345PubMedGoogle Scholar
- Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN (2007) Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 37(6):748–755PubMedCrossRefGoogle Scholar
- Hoet P, De Graef E, Swennen B et al (2012) Occupational exposure to indium: what does biomonitoring tell us? Toxicol Lett 213(1):122–128PubMedCrossRefGoogle Scholar
- Huaux F, Lardot C, Arras M et al (1999) Lung fibrosis induced by silica particles in NMRI mice is associated with an upregulation of the p40 subunit of interleukin-12 and Th-2 manifestations. Am J Respir Cell Mol Biol 20(4):561–572PubMedCrossRefGoogle Scholar
- Huaux F, Lo Re S, Giordano G et al (2015) IL-1alpha induces CD11b(low) alveolar macrophage proliferation and maturation during granuloma formation. J Pathol 235(5):698–709PubMedCrossRefGoogle Scholar
- Jenkins SJ, Ruckerl D, Cook PC et al (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332(6035):1284–1288PubMedPubMedCentralCrossRefGoogle Scholar
- Jenkins SJ, Ruckerl D, Thomas GD et al (2013) IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J Exp Med 210(11):2477–2491PubMedPubMedCentralCrossRefGoogle Scholar
- Jeon HJ, Jeong HS, Kim YH, Jung WB, Kim JY, Jung HT (2014) Fabrication of 10 nm-scale complex 3D nanopatterns with multiple shapes and components by secondary sputtering phenomenon. ACS Nano 8(2):1204–1212PubMedCrossRefGoogle Scholar
- Jeong J, Kim J, Seok SH, Cho WS (2016) Indium oxide (InO) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles. Arch Toxicol 90(4):817–828PubMedCrossRefGoogle Scholar
- Johnston LK, Rims CR, Gill SE, McGuire JK, Manicone AM (2012) Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am J Respir Cell Mol Biol 47(4):417–426PubMedPubMedCentralCrossRefGoogle Scholar
- Kirby PJ, Shines CJ, Taylor GJ et al (2009) Pleural effects of indium phosphide in B6C3F1 mice: nonfibrous particulate induced pleural fibrosis. Exp Lung Res 35(10):858–882PubMedPubMedCentralCrossRefGoogle Scholar
- Lardot CG, Huaux FA, Broeckaert FR et al (1998) Role of urokinase in the fibrogenic response of the lung to mineral particles. Am J Respir Crit Care Med 157(2):617–628PubMedCrossRefGoogle Scholar
- Lison D, Laloy J, Corazzari I et al (2009) Sintered indium-tin-oxide (ITO) particles: a new pneumotoxic entity. Toxicol Sci 108(2):472–481PubMedCrossRefGoogle Scholar
- Masuko H, Hizawa N, Chonan T et al (2011) Indium-tin oxide does not induce GM-CSF autoantibodies. Am J Respir Crit Care Med 184(6):741 (author reply 741-2) PubMedCrossRefGoogle Scholar
- Nagano K, Gotoh K, Kasai T et al (2011a) Two- and 13-week inhalation toxicities of indium-tin oxide and indium oxide in rats. J Occup Health 53(2):51–63PubMedCrossRefGoogle Scholar
- Nagano K, Nishizawa T, Eitaki Y et al (2011b) Pulmonary toxicity in mice by 2- and 13-week inhalation exposures to indium-tin oxide and indium oxide aerosols. J Occup Health 53(3):234–239PubMedCrossRefGoogle Scholar
- Nagano K, Nishizawa T, Umeda Y et al (2011c) Inhalation carcinogenicity and chronic toxicity of indium-tin oxide in rats and mice. J Occup Health 53(3):175–187PubMedCrossRefGoogle Scholar
- Nairz M, Theurl I, Swirski FK, Weiss G (2017) “Pumping iron"-how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflugers Arch 469(3–4):397–418PubMedPubMedCentralCrossRefGoogle Scholar
- Naji A, Muzembo BA, Yagyu K et al (2016) Endocytosis of indium-tin-oxide nanoparticles by macrophages provokes pyroptosis requiring NLRP3-ASC-Caspase1 axis that can be prevented by mesenchymal stem cells. Sci Rep 6:26162PubMedPubMedCentralCrossRefGoogle Scholar
- Ohtake Y, Maruko A, Satoh S, Ohkubo Y (2008) The uptake of 111In in the liver and bone marrow of partially hepatectomized and venesectioned rats. Appl Radiat Isot 66(9):1245–1249PubMedCrossRefGoogle Scholar
- Olgun NS, Morris AM, Barber TL et al (2017) Comparison of the toxicity of sintered and unsintered indium-tin oxide particles in murine macrophage and epidermal cells. Toxicol Appl Pharmacol 331:85–93PubMedCrossRefGoogle Scholar
- Philippot Q, Deslee G, Adair-Kirk TL et al (2014) Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease. PLoS One 9(5):e96285PubMedPubMedCentralCrossRefGoogle Scholar
- Rabolli V, Badissi AA, Devosse R et al (2014) The alarmin IL-1alpha is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part Fibre Toxicol 11(1):69PubMedPubMedCentralCrossRefGoogle Scholar
- Sabatel C, Radermecker C, Fievez L et al (2017) Exposure to bacterial CpG DNA protects from airway allergic inflammation by expanding regulatory lung interstitial macrophages. Immunity 46(3):457–473PubMedCrossRefGoogle Scholar
- Suzuki T, Trapnell BC (2016) Pulmonary alveolar proteinosis syndrome. Clin Chest Med 37(3):431–440PubMedCrossRefGoogle Scholar
- Suzuki T, Sakagami T, Young LR et al (2010) Hereditary pulmonary alveolar proteinosis: pathogenesis, presentation, diagnosis, and therapy. Am J Respir Crit Care Med 182(10):1292–1304PubMedPubMedCentralCrossRefGoogle Scholar
- Suzuki T, Arumugam P, Sakagami T et al (2014) Pulmonary macrophage transplantation therapy. Nature 514(7523):450–454PubMedPubMedCentralCrossRefGoogle Scholar
- Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944PubMedCrossRefGoogle Scholar
- Trapnell BC, Carey BC, Uchida K, Suzuki T (2009) Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GM-CSF stimulation of macrophages. Curr Opin Immunol 21(5):514–521PubMedPubMedCentralCrossRefGoogle Scholar
- Van Hulle M, De Cremer K, Cornelis R, Lameire N (2001) In vivo distribution and speciation of [114mIn]InCl3 in the Wistar rat. J Environ Monit 3(1):86–90PubMedCrossRefGoogle Scholar
- Weiel JE, Adams DO, Hamilton TA (1984) Murine monocytes express transferrin receptors: evidence for similarity to inflammatory macrophages. Cell Immunol 88(2):343–349PubMedCrossRefGoogle Scholar
- Yona S, Kim KW, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91PubMedCrossRefGoogle Scholar
- Yu YR, Hotten DF, Malakhau Y et al (2016) Flow Cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues. Am J Respir Cell Mol Biol 54(1):13–24PubMedPubMedCentralCrossRefGoogle Scholar
- Zaynagetdinov R, Sherrill TP, Kendall PL et al (2013) Identification of myeloid cell subsets in murine lungs using flow cytometry. Am J Respir Cell Mol Biol 49(2):180–189PubMedPubMedCentralCrossRefGoogle Scholar
- Zigmond E, Varol C, Farache J et al (2012) Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37(6):1076–1090PubMedCrossRefGoogle Scholar