Advertisement

Archives of Toxicology

, Volume 92, Issue 3, pp 1023–1035 | Cite as

MiR-26a functions as a tumor suppressor in ambient particulate matter-bound metal-triggered lung cancer cell metastasis by targeting LIN28B–IL6–STAT3 axis

  • Yan-Yang Lu
  • Yi Lin
  • Dong-Xiao Ding
  • Shu Su
  • Qiao-Qiao Chi
  • You-Chi Zhang
  • Jian Sun
  • Xu Zhang
  • Hui-Min Zhu
  • Qian-Sheng Huang
  • Yu-Lang Chi
  • Guo-Zhu Ye
  • Shu Tao
  • Si-Jun Dong
Inorganic Compounds
  • 325 Downloads

Abstract

Exposure to ambient particulate matter (PM) has been linked to the increasing incidence and mortality of lung cancer, but the principal toxic components and molecular mechanism remain to be further elucidated. In this study, human lung adenocarcinoma A549 cells were treated with serial concentrations of water-extracted PM10 (WE-PM10) collected from Beijing, China. Our results showed that exposure to 25 and 50 μg/ml of WE-PM10 for 48 h significantly suppressed miR-26a to upregulate lin-28 homolog B (LIN28B), and in turn activated interleukin 6 (IL6) and signal transducer and activator of transcription 3 (STAT3) in A549 cells, subsequently contributing to enhanced epithelial–mesenchymal transition and accelerated migration and invasion. In vivo pulmonary colonization assay further indicated that WE-PM10 enhanced the metastatic ability of A549 cells. In addition, luciferase reporter assay demonstrated that 3′ untranslated region of LIN28B was a direct target of miR-26a. Last but not the least, the key toxic contribution of metals in WE-PM10 was confirmed by the finding that removal of metals through chelation significantly rescued WE-PM10-mediated inflammatory, carcinogenic and metastatic responses. Taken together, miR-26a could act as the tumor suppressor in PM10-related lung cancer, and PM10-bound metals promoted lung cancer cell metastasis through downregulation of miR-26a that directly mediated LIN28B expression.

Keywords

Water-extracted PM10 (WE-PM10Metals MiR-26a Migration Invasion Inflammation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China [41390240, 21677140 and 21477124]; the Youth Innovation Promotion Association, CAS [217349]; the Knowledge Innovation Program of the Chinese Academy of Sciences [IUEQN201301 and IUEQN201506]; the Natural Science Foundation of Fujian, China [2017J01028].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All of the animal experiments were carried out in accordance with the guidelines of the Xiamen University Institutional Committee for the Care and Use of Laboratory Animals and the Institutional Animal Ethics Committee of Institute of Urban Environment, Chinese Academy of Sciences. The manuscript did not contain clinical studies or patient data.

Supplementary material

204_2017_2141_MOESM1_ESM.pdf (677 kb)
Supplementary Method: Apoptosis detection. Table S1. Primers used in the construction of luciferase reporters. Table S2. Primers used in qPCR analyses of mRNA. Table S3. Primers used in qPCR analyses of miRNA. Fig. S1. Expression of miR-26a. Fig. S2. mRNA expression of LIN28B. Fig. S3. WE-PM10 did not induce apoptosis or proliferation in A549 cells. Fig. S4. Quantification of the protein levels in Fig. 2g and the transwell assays in Fig. 2h. Fig. S5. Quantification of protein levels in Fig. 7d (PDF 677 KB)

References

  1. Beckers A, Van Peer G, Carter DR et al (2015) MYCN-driven regulatory mechanisms controlling LIN28B in neuroblastoma. Cancer Lett 366(1):123–132.  https://doi.org/10.1016/j.canlet.2015.06.015 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bollati V, Marinelli B, Apostoli P et al (2010) Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect 118(6):763–768.  https://doi.org/10.1289/ehp.0901300 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chen X, Zhang L, Huang J et al (2016) Long-term exposure to urban air pollution and lung cancer mortality: a 12-year cohort study in Northern China. Sci Total Environ 571:855–861.  https://doi.org/10.1016/j.scitotenv.2016.07.064 CrossRefPubMedGoogle Scholar
  4. Chen J, Xu Y, Tao L et al (2017a) MiRNA-26a contributes to the acquisition of malignant behaviors of doctaxel-resistant lung adenocarcinoma cells through targeting EZH2. Cell Physiol Biochem 41(2):583–597.  https://doi.org/10.1159/000457879 CrossRefPubMedGoogle Scholar
  5. Chen W, Zheng R, Zhang S et al (2017b) Cancer incidence and mortality in China in 2013: an analysis based on urbanization level. Chin J Cancer Res 29(1):1–10.  https://doi.org/10.21147/j.issn.1000-9604.2017.01.01 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Deng X, Feng N, Zheng M et al (2017) PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. BBA-Gen Subj 1861(2):112–125.  https://doi.org/10.1016/j.bbagen.2016.11.009 CrossRefGoogle Scholar
  7. Fu X, Meng Z, Liang W et al (2014) miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene 33(34):4296–4306.  https://doi.org/10.1038/onc.2013.385 CrossRefPubMedGoogle Scholar
  8. Gao SP, Mark KG, Leslie K et al (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117(12):3846–3856.  https://doi.org/10.1172/jci31871 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guan W, Zheng X, Chung K, Zhong N (2016) Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet 388(10054):1939–1951.  https://doi.org/10.1016/s0140-6736(16)31597-5 CrossRefPubMedGoogle Scholar
  10. Guo Y, Zeng H, Zheng R et al (2016) The association between lung cancer incidence and ambient air pollution in China: a spatiotemporal analysis. Environ Res 144(Pt A):60–65.  https://doi.org/10.1016/j.envres.2015.11.004 CrossRefPubMedGoogle Scholar
  11. Guo Y, Zeng H, Zheng R et al (2017) The burden of lung cancer mortality attributable to fine particles in China. Sci Total Environ 579:1460–1466.  https://doi.org/10.1016/j.scitotenv CrossRefPubMedGoogle Scholar
  12. Hamra GB, Guha N, Cohen A et al (2014) Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect 122(9):906–911.  https://doi.org/10.1289/ehp.1408092 PubMedPubMedCentralGoogle Scholar
  13. IARC (2012) Agents classified by the IARC monographs, volumes 1–109. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  14. Jardim MJ, Fry RC, Jaspers I, Dailey L, Diaz-Sanchez D (2009) Disruption of microRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways. Environ Health Perspect 117(11):1745–1751.  https://doi.org/10.1289/ehp.0900756 PubMedPubMedCentralGoogle Scholar
  15. Li N, Hao M, Phalen RF, Hinds WC, Nel AE (2003) Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 109(3):250–265.  https://doi.org/10.1016/j.clim.2003.08.006 CrossRefPubMedGoogle Scholar
  16. Li X, Lv Y, Gao N et al (2016) microRNA-802/Rnd3 pathway imposes on carcinogenesis and metastasis of fine particulate matter exposure. Oncotarget 7(23):35026–35043.  https://doi.org/10.18632/oncotarget.9019 PubMedPubMedCentralGoogle Scholar
  17. Liang H, Liu S, Chen Y et al (2016) miR-26a suppresses EMT by disrupting the Lin28B/let-7d axis: potential cross-talks among miRNAs in IPF. J Mol Med 94(6):655–665.  https://doi.org/10.1007/s00109-016-1381-8 CrossRefPubMedGoogle Scholar
  18. Lin G, Liu B, Meng Z et al (2017) MiR-26a enhances invasive capacity by suppressing GSK3beta in human lung cancer cells. Exp Cell Res 352(2):364–374.  https://doi.org/10.1016/j.yexcr.2017.02.033 CrossRefPubMedGoogle Scholar
  19. Liu B, Wu X, Liu B et al (2012) MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN. BBA-Mol Basis Dis 1822(11):1692–1704.  https://doi.org/10.1016/j.bbadis.2012.07.019 CrossRefGoogle Scholar
  20. Liu Q, Baumgartner J, Zhang Y, Liu Y, Sun Y, Zhang M (2014) Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing. Environ Sci Technol 48(21):12920–12929.  https://doi.org/10.1021/es5029876 CrossRefPubMedGoogle Scholar
  21. Liu P, Tang H, Chen B et al (2015) miR-26a suppresses tumour proliferation and metastasis by targeting metadherin in triple negative breast cancer. Cancer Lett 357(1):384–392.  https://doi.org/10.1016/j.canlet.2014.11.050 CrossRefPubMedGoogle Scholar
  22. Lu J, He M, Wang L et al (2011) MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 71(1):225–233.  https://doi.org/10.1158/0008-5472.can-10-1850 CrossRefPubMedGoogle Scholar
  23. Michael S, Montag M, Dott W (2013) Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environ Pollut 183:19–29.  https://doi.org/10.1016/j.envpol.2013.01.026 CrossRefPubMedGoogle Scholar
  24. Morales-Barcenas R, Chirino YI, Sanchez-Perez Y et al (2015) Particulate matter (PM10) induces metalloprotease activity and invasion in airway epithelial cells. Toxicol Lett 237(3):167–173.  https://doi.org/10.1016/j.toxlet.2015.06.001 CrossRefPubMedGoogle Scholar
  25. Pan H, Wen Z, Huang Y et al (2015) Down-regulation of microRNA-144 in air pollution-related lung cancer. Sci Rep 5:14331.  https://doi.org/10.1038/srep14331 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pardo M, Shafer MM, Rudich A, Schauer JJ, Rudich Y (2015) Single exposure to near roadway particulate matter leads to confined inflammatory and defense responses: possible role of metals. Environ Sci Technol 49(14):8777–8785.  https://doi.org/10.1021/acs.est.5b01449 CrossRefPubMedGoogle Scholar
  27. Pastuszak-Lewandoska D, Kordiak J, Czarnecka KH et al (2016) Expression analysis of three miRNAs, miR-26a, miR-29b and miR-519d, in relation to MMP-2 expression level in non-small cell lung cancer patients: a pilot study. Med Oncol 33(8):96.  https://doi.org/10.1007/s12032-016-0815-z CrossRefPubMedGoogle Scholar
  28. Raaschou-Nielsen O, Andersen ZJ, Beelen R et al (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 14(9):813–822.  https://doi.org/10.1016/s1470-2045(13)70279-1 CrossRefPubMedGoogle Scholar
  29. Raaschou-Nielsen O, Beelen R, Wang M et al (2016) Particulate matter air pollution components and risk for lung cancer. Environ Int 87:66–73.  https://doi.org/10.1016/j.envint.2015.11.007 CrossRefPubMedGoogle Scholar
  30. Rodriguez-Cotto RI, Ortiz-Martinez MG, Rivera-Ramirez E et al (2014) Particle pollution in Rio de Janeiro, Brazil: increase and decrease of pro-inflammatory cytokines IL-6 and IL-8 in human lung cells. Environ Pollut 194:112–120.  https://doi.org/10.1016/j.envpol.2014.07.010 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sander S, Bullinger L, Klapproth K et al (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112(10):4202–4212.  https://doi.org/10.1182/blood-2008-03-147645 CrossRefPubMedGoogle Scholar
  32. Viswanathan SR, Powers JT, Einhorn W et al (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41(7):843–848.  https://doi.org/10.1038/ng.392 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang B, Li K, Jin W et al (2013) Properties and inflammatory effects of various size fractions of ambient particulate matter from Beijing on A549 and J774A.1 cells. Environ Sci Technol 47(18):10583–10590.  https://doi.org/10.1021/es401394g PubMedGoogle Scholar
  34. Wang L, Zhang L, Wu J et al (2014) IL-1beta-mediated repression of microRNA-101 is crucial for inflammation-promoted lung tumorigenesis. Cancer Res 74(17):4720–4730.  https://doi.org/10.1158/0008-5472.can-14-0960 CrossRefPubMedGoogle Scholar
  35. Wei J, Li F, Yang J, Liu X, Cho WC (2015) MicroRNAs as regulators of airborne pollution-induced lung inflammation and carcinogenesis. Arch Toxicol 89(5):677–685.  https://doi.org/10.1007/s00204-015-1462-4 CrossRefPubMedGoogle Scholar
  36. Xu W, Wu Q, Liu X, Tang A, Dore AJ, Heal MR (2016) Characteristics of ammonia, acid gases, and PM2.5 for three typical land-use types in the North China Plain. Environ Sci Pollut Res Int 23(2):1158–1172.  https://doi.org/10.1007/s11356-015-5648-3 CrossRefPubMedGoogle Scholar
  37. Yang X, Liang L, Zhang X et al (2013) MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology 58(1):158–170.  https://doi.org/10.1002/hep.26305 CrossRefPubMedGoogle Scholar
  38. Yang C, Zheng S, Liu T et al (2017) Down-regulated miR-26a promotes proliferation, migration, and invasion via negative regulation of MTDH in esophageal squamous cell carcinoma. FASEB J 31(5):2114–2122.  https://doi.org/10.1096/fj.201601237 CrossRefPubMedGoogle Scholar
  39. Yeh HH, Lai WW, Chen HH, Liu HS, Su WC (2006) Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene 25(31):4300–4309.  https://doi.org/10.1038/sj.onc.1209464 CrossRefPubMedGoogle Scholar
  40. Zeidler-Erdely PC, Meighan TG, Erdely A et al (2013) Lung tumor promotion by chromium-containing welding particulate matter in a mouse model. Part Fibre Toxicol 10:45.  https://doi.org/10.1186/1743-8977-10-45 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zhang X, Xiao D, Wang Z et al (2014) MicroRNA-26a/b regulate DNA replication licensing, tumorigenesis, and prognosis by targeting CDC6 in lung cancer. Mol Cancer Res 12(11):1535–1546.  https://doi.org/10.1158/1541-7786.mcr-13-0641 CrossRefPubMedGoogle Scholar
  42. Zhu H, Vishwamitra D, Curry CV et al (2013) NPM-ALK up-regulates iNOS expression through a STAT3/microRNA-26a-dependent mechanism. J Pathol 230(1):82–94.  https://doi.org/10.1002/path.4171 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yan-Yang Lu
    • 1
    • 3
    • 4
  • Yi Lin
    • 1
    • 3
  • Dong-Xiao Ding
    • 1
    • 3
    • 4
  • Shu Su
    • 2
  • Qiao-Qiao Chi
    • 3
  • You-Chi Zhang
    • 3
  • Jian Sun
    • 3
  • Xu Zhang
    • 1
    • 3
    • 4
  • Hui-Min Zhu
    • 1
    • 3
  • Qian-Sheng Huang
    • 1
    • 3
  • Yu-Lang Chi
    • 1
    • 3
  • Guo-Zhu Ye
    • 1
    • 3
  • Shu Tao
    • 2
  • Si-Jun Dong
    • 1
    • 3
  1. 1.Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  2. 2.Laboratory for Earth Surface Processes, College of Urban and Environmental SciencesPeking UniversityBeijingChina
  3. 3.Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  4. 4.College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations