Archives of Toxicology

, Volume 92, Issue 3, pp 1065–1074 | Cite as

Desorption kinetics of organic chemicals from albumin

  • Sophia Krause
  • Nadin Ulrich
  • Kai-Uwe Goss
Toxicokinetics and Metabolism


When present in blood, most chemicals tend to bind to the plasma protein albumin. For distribution into surrounding tissues, desorption from albumin is necessary, because only the unbound form of a chemical is assumed to be able to cross cell membranes. For metabolism of chemicals, the liver is a particularly important organ. One potentially limiting step for hepatic uptake of the chemicals is desorption from albumin, because blood passes the human liver within seconds. Desorption kinetics from albumin can thus be an important parameter for our pharmacokinetic and toxicokinetic understanding of chemicals. This work presents a dataset of measured desorption rate constants and reveals a possibility for their prediction. Additionally, the obtained extraction profiles directly indicate physiological relevance of desorption kinetics, because desorption of the test chemicals is still incomplete after time frames comparable to the residence time of blood in the liver.


Albumin Desorption kinetics Protein-binding 



The authors thank Robert Köhler and Anett Georgi for technical support, Andrea Pfennigsdorff for lab assistance, Benjamin Schwarz for facilitating the measurement of a breakthrough curve and Satoshi Endo and Beate Escher for useful comments on our work. Additionally, we would like to thank the reviewers for their valuable comments which improved our manuscript strongly.

Supplementary material

204_2017_2117_MOESM1_ESM.pdf (380 kb)
Supplementary material 1 (PDF 379 KB)


  1. Berezhkovskiy LM (2012) Determination of hepatic clearance with the account of drug–protein binding kinetics. J Pharm Sci 101(10):3936–3945. CrossRefPubMedGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72(1):248–254. CrossRefPubMedGoogle Scholar
  3. ChemAxon (2016) Instant JChem Version Accessed April 2017.
  4. Chen J, Schiel JE, Hage DS (2009) Noncompetitive peak decay analysis of drug–protein dissociation by high-performance affinity chromatography. J Sep Sci 32(10):1632–1641. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Eisert R, Pawliszyn J (1997) Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Anal Chem 69(16):3140–3147. CrossRefGoogle Scholar
  6. El Kadi N, Taulier N, Le Huérou JY et al (2006) Unfolding and refolding of bovine serum albumin at acid pH: ultrasound and structural studies. Biophys J 91(9):3397–3404. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Endo S, Goss K-U (2011) Serum albumin binding of structurally diverse neutral organic compounds: data and models. Chem Res Toxicol 24(12):2293–2301. CrossRefPubMedGoogle Scholar
  8. Endo S, Pfennigsdorff A, Goss K-U (2012) Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules. Environ Sci Technol 46(3):1496–1503. CrossRefPubMedGoogle Scholar
  9. Faerch T, Jacobsen J (1975) Determination of association and dissociation rate constants for bilirubin-bovine serum albumin. Arch Biochem Biophys 168(2):351–357. CrossRefPubMedGoogle Scholar
  10. Fang X, Vitrac O (2017) Predicting diffusion coefficients of chemicals in and through packaging materials. Crit Rev Food Sci Nutr 57(2):275–312. CrossRefPubMedGoogle Scholar
  11. Fasano M, Curry S, Terreno E et al (2005) The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57(12):787–796. CrossRefPubMedGoogle Scholar
  12. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353(1):38–52. CrossRefPubMedGoogle Scholar
  13. Gray RD, Stroupe SD (1978) Kinetics and mechanism of bilirubin binding to human serum albumin. J Biol Chem 253(12):4370–4377PubMedGoogle Scholar
  14. Hills EE, Abraham MH, Hersey A, Bevan CD (2011) Diffusion coefficients in ethanol and in water at 298 K: linear free energy relationships. Fluid Phase Equilib 303(1):45–55. CrossRefGoogle Scholar
  15. Kopinke FD, Ramus K, Poerschmann J, Georgi A (2011) Kinetics of desorption of organic compounds from dissolved organic matter. Environ Sci Technol 45(23):10013–10019. CrossRefPubMedGoogle Scholar
  16. Kramer NI, van Eijkeren JCH, Hermens JLM (2007) Influence of albumin on sorption kinetics in solid-phase microextraction: consequences for chemical analyses and uptake processes. Anal Chem 79(18):6941–6948. CrossRefPubMedGoogle Scholar
  17. Linden L, Goss K-U, Endo S (2017) 3D-QSAR predictions for bovine serum albumin–water partition coefficients of organic anions using quantum mechanically based descriptors. Environ Sci Process Impacts 19(3):261–269. CrossRefPubMedGoogle Scholar
  18. Mendel CM (1989) The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev 10(3):232–274. CrossRefPubMedGoogle Scholar
  19. Mielke H, Di Consiglio E, Kreutz R, Partosch F, Testai E, Gundert-Remy U (2017) The importance of protein binding for the in vitroin vivo extrapolation (IVIVE)—example of ibuprofen, a highly protein-bound substance. Arch Toxicol 91(4):1663–1670. CrossRefPubMedGoogle Scholar
  20. Peters T Jr (1995a) The albumin molecule: its structure and chemical properties. In: Peters T (ed) All about albumin. Academic Press, San Diego, pp 9–75CrossRefGoogle Scholar
  21. Peters T Jr (1995b) Metabolism: albumin in the body. In: Peters T (ed) All about albumin. Academic Press, San Diego, pp 188–250CrossRefGoogle Scholar
  22. Poulin P, Haddad S (2013) Toward a new paradigm for the efficient in vitroin vivo extrapolation of metabolic clearance in humans from hepatocyte data. J Pharm Sci 102(9):3239–3251. CrossRefPubMedGoogle Scholar
  23. Rich RL, Day YSN, Morton TA, Myszka DG (2001) High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. Anal Biochem 296(2):197–207. CrossRefPubMedGoogle Scholar
  24. Riley RJ, McGinnity DF, Austin RP (2005) A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab Dispos 33(9):1304–1311. CrossRefPubMedGoogle Scholar
  25. Schwen LO, Schenk A, Kreutz C et al (2015) Representative sinusoids for hepatic four-scale pharmacokinetics simulations. PLoS One 10(7):e0133653. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Svenson A, Holmer E, Andersson L-O (1974) A new method for the measurement of dissociation rates for complexes between small ligands and proteins as applied to the palmitate and bilirubin complexes with serum albumin. Biochim Biophys Acta Protein Struct 342(1):54–59. CrossRefGoogle Scholar
  27. Ulrich N, Endo S, Brown TN, Watanabe N, Bronner G, Abraham MH, Goss KU (2017) UFZ-LSER database v 3.2. Accessed feb 2017.
  28. Vandenbelt JM, Hansch C, Church C (1972) Binding of apolar molecules by serum albumin. J Med Chem 15(8):787–789. CrossRefPubMedGoogle Scholar
  29. Wake K, Sato T (2015) “The Sinusoid” in the liver: lessons learned from the original definition by Charles Sedgwick Minot (1900). Anat Rec 298(12):2071–2080. CrossRefGoogle Scholar
  30. Weisiger RA (1985) Dissociation from albumin: a potentially rate-limiting step in the clearance of substances by the liver. Proc Natl Acad Sci 82(5):1563–1567CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yoo MJ, Hage DS (2011a) High-throughput analysis of drug dissociation from serum proteins using affinity silica monoliths. J Sep Sci 34(16–17):2255–2263. PubMedPubMedCentralGoogle Scholar
  32. Yoo MJ, Hage DS (2011b) Use of peak decay analysis and affinity microcolumns containing silica monoliths for rapid determination of drug–protein dissociation rates. J Chromatogr A 1218(15):2072–2078. CrossRefPubMedGoogle Scholar
  33. Zheng X, Li Z, Podariu MI, Hage DS (2014) Determination of rate constants and equilibrium constants for solution-phase drug–protein interactions by ultrafast affinity extraction. Anal Chem 86(13):6454–6460. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Analytical Environmental ChemistryHelmholtz Centre for Environmental Research UFZLeipzigGermany
  2. 2.Institute of ChemistryUniversity of Halle-WittenbergHalleGermany

Personalised recommendations