Archives of Toxicology

, Volume 92, Issue 3, pp 1177–1188 | Cite as

Evaluation of immune-mediated idiosyncratic drug toxicity using chimeric HLA transgenic mice

  • Takeshi Susukida
  • Shigeki Aoki
  • Kotaro Kogo
  • Sota Fujimori
  • Binbin Song
  • Cong Liu
  • Shuichi Sekine
  • Kousei Ito


Immune-mediated idiosyncratic drug toxicity (IDT) is a rare adverse drug reaction, potentially resulting in death. Although genome-wide association studies suggest that the occurrence of immune-mediated IDT is strongly associated with specific human leukocyte antigen (HLA) allotypes, these associations have not yet been prospectively demonstrated. In this study, we focused on HLA-B*57:01 and abacavir (ABC)-induced immune-mediated IDT, and constructed transgenic mice carrying chimeric HLA-B*57:01 (B*57:01-Tg) to determine if this in vivo model may be useful for evaluating immune-mediated IDT. Local lymph node assay (LLNA) results demonstrated that percentages of BrdU+, IL-2+, and IFN-γ+ in CD8+ T cells of ABC (50 mg/kg/day)-applied B*57:01-Tg mice were significantly higher than those in littermates (LMs), resulting in the infiltration of inflammatory cells into the ear. These immune responses were not observed in B*57:03-Tg mice (negative control). Furthermore, oral administration of 1% (v/v) ABC significantly increased the percentage of CD44highCD62Llow CD8+ memory T cells in lymph nodes and spleen derived from B*57:01-Tg mice, but not in those from B*57:03-Tg mice and LMs. These results suggest that B*57:01-Tg mice potentially enable the reproduction and evaluation of HLA-B*57:01 and ABC-induced immune-mediated IDT.


Idiosyncratic drug toxicity Immunotoxicology Human leucocyte antigen In vivo model Abacavir 





Bovine serum albumin




Cytotoxic T lymphocyte-associated antigen 4


Drug-induced liver injury


Dimethyl sulfoxide


Fluorescence-activated cell sorting


Fetal bovine serum




Genome-wide association study


Human leukocyte antigen


Hypersensitivity reaction


Idiosyncratic drug toxicity


Local lymph node assay




Peripheral blood mononuclear cells


Programmed cell death protein 1



This work was supported by the Japan Society for the Promotion of Science (JSPS) (JSPS KAKENHI Grant Nos. 24390037, 25670068, 15K14995, 15H04661, 16K18932, and 17J03861), the Uehara Memorial Foundation, and the Leading Graduate School at Chiba University. The authors express their gratitude to Daiichi Sankyo Company, Limited (TaNeDS program) for beneficial advisement on this project; and Dr. Yagi, Dr. Sarkar, and Dr. Mita (Department of Immunology, Graduate School of Medicine, Chiba University) for their valuable technical support on this project.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interests in association with this manuscript.

Supplementary material

204_2017_2112_MOESM1_ESM.pdf (608 kb)
Supplementary material 1 (PDF 607 KB)
204_2017_2112_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 21 KB)


  1. Adam J, Wuillemin N, Watkins S et al (2014) Abacavir induced T cell reactivity from drug naive individuals shares features of allo-immune responses. PLoS One 9(4):e95339. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bell CC, Faulkner L, Martinsson K et al (2013) T-cells from HLA-B*57:01 + human subjects are activated with abacavir through two independent pathways and induce cell death by multiple mechanisms. Chem Res Toxicol 26(5):759–766. CrossRefPubMedGoogle Scholar
  3. Boutros C, Tarhini A, Routier E et al (2016) Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol 13(8):473–486. CrossRefPubMedGoogle Scholar
  4. Carey MA, van Pelt FN (2005) Immunochemical detection of flucloxacillin adduct formation in livers of treated rats. Toxicology 216(1):41–48. CrossRefPubMedGoogle Scholar
  5. Chessman D, Kostenko L, Lethborg T et al (2008) Human leukocyte antigen class I-restricted activation of CD8 + T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 28(6):822–832. CrossRefPubMedGoogle Scholar
  6. Chikuma S, Terawaki S, Hayashi T et al (2009) PD-1-mediated suppression of IL-2 production induces CD8 + T cell anergy in vivo. J Immunol 182(11):6682–6689. CrossRefPubMedGoogle Scholar
  7. Daly AK, Donaldson PT, Bhatnagar P et al (2009) HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41(7):816–819. CrossRefPubMedGoogle Scholar
  8. Engelhard VH, Le AX, Holterman MJ (1988) Species-specific structural differences in the alpha 1 + alpha 2 domains determine the frequency of murine cytotoxic T cell precursors stimulated by human and murine class I molecules. J Immunol 141(6):1835–1839PubMedGoogle Scholar
  9. Frauwirth KA, Alegre ML, Thompson CB (2001) CTLA-4 is not required for induction of CD8(+) T cell anergy in vivo. J Immunol 167(9):4936–4941CrossRefPubMedGoogle Scholar
  10. Illing PT, Vivian JP, Dudek NL et al (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7404):554–558. CrossRefPubMedGoogle Scholar
  11. Illing PT, Mifsud NA, Purcell AW (2016) Allotype specific interactions of drugs and HLA molecules in hypersensitivity reactions. Curr Opin Immunol 42:31–40. CrossRefPubMedGoogle Scholar
  12. Irwin MJ, Heath WR, Sherman LA (1989) Species-restricted interactions between CD8 and the alpha 3 domain of class I influence the magnitude of the xenogeneic response. J Exp Med 170(4):1091–1101CrossRefPubMedGoogle Scholar
  13. Kalinke U, Arnold B, Hammerling GJ (1990) Strong xenogeneic HLA response in transgenic mice after introducing an alpha 3 domain into HLA B27. Nature 348(6302):642–644. CrossRefPubMedGoogle Scholar
  14. Khare SD, Hansen J, Luthra HS, David CS (1996) HLA-B27 heavy chains contribute to spontaneous inflammatory disease in B27/human beta2-microglobulin (beta2m) double transgenic mice with disrupted mouse beta2m. J Clin Invest 98(12):2746–2755. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kimber I, Dearman RJ, Basketter DA, Ryan CA, Gerberick GF (2002) The local lymph node assay: past, present and future. Contact Dermat 47(6):315–328CrossRefGoogle Scholar
  16. Lucas A, Lucas M, Strhyn A et al (2015) Abacavir-reactive memory T cells are present in drug naive individuals. PLoS One 10(2):e0117160. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mallal S, Phillips E, Carosi G et al (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568–579. CrossRefPubMedGoogle Scholar
  18. Marron MP, Graser RT, Chapman HD, Serreze DV (2002) Functional evidence for the mediation of diabetogenic T cell responses by HLA-A2.1 MHC class I molecules through transgenic expression in NOD mice. Proc Natl Acad Sci U S A 99(21):13753–13758. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Martin AM, Nolan D, Gaudieri S et al (2004) Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc Natl Acad Sci USA 101(12):4180–4185. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Metushi IG, Hayes MA, Uetrecht J (2015) Treatment of PD-1(-/-) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology 61(4):1332–1342. CrossRefPubMedGoogle Scholar
  21. Monshi MM, Faulkner L, Gibson A et al (2013) Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology 57(2):727–739. CrossRefPubMedGoogle Scholar
  22. Norcross MA, Luo S, Lu L et al (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26(11):F21–F29. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Rozieres A, Vocanson M, Rodet K et al (2010) CD8 + T cells mediate skin allergy to amoxicillin in a mouse model. Allergy 65(8):996–1003. CrossRefPubMedGoogle Scholar
  24. Saag M, Balu R, Phillips E et al (2008) High sensitivity of human leukocyte antigen-b*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin Infect Dis 46(7):1111–1118. CrossRefPubMedGoogle Scholar
  25. Tailor A, Waddington JC, Meng X, Park BK (2016) Mass Spectrometric and Functional aspects of drug-protein conjugation. Chem Res Toxicol 29(12):1912–1935. CrossRefPubMedGoogle Scholar
  26. Takaki T, Marron MP, Mathews CE et al (2006) HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J Immunol 176(5):3257–3265CrossRefPubMedGoogle Scholar
  27. Tiegs G, Lohse AW (2010) Immune tolerance: what is unique about the liver. J Autoimmun 34(1):1–6. CrossRefPubMedGoogle Scholar
  28. Trichas G, Begbie J, Srinivas S (2008) Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol 6:40. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Uetrecht J, Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. Pharmacol Rev 65(2):779–808. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Watkins PB (2005) Idiosyncratic liver injury: challenges and approaches. Toxicol Pathol 33(1):1–5. CrossRefPubMedGoogle Scholar
  31. WHO (2016) Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. Who guidelines approved by the guidelines review committee, 2nd edn, WHO, GenevaGoogle Scholar
  32. Wuillemin N, Adam J, Fontana S, Krahenbuhl S, Pichler WJ, Yerly D (2013) HLA haplotype determines hapten or p-i T cell reactivity to flucloxacillin. J Immunol 190(10):4956–4964. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Takeshi Susukida
    • 1
  • Shigeki Aoki
    • 1
  • Kotaro Kogo
    • 1
  • Sota Fujimori
    • 1
  • Binbin Song
    • 1
  • Cong Liu
    • 1
  • Shuichi Sekine
    • 1
  • Kousei Ito
    • 1
  1. 1.Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan

Personalised recommendations