Abstract
Probiotics have been explored to stimulate gut health in weaned pigs, when they started to consume solid diet where mycotoxins could be present. The aim of this study was to evaluate the effect of Lactobacillus rhamnosus RC007 on the intestinal toxicity of deoxynivalenol (DON) in an ex vivo model. Jejunal explants, obtained from 5-week-old crossbred castrated male piglets, were kept as control, exposed for 3 h to 10 μM DON, incubated for 4 h with 109 CFU/mL L. rhamnosus, or pre-incubated 1 h with 109 L. rhamnosus and exposed to DON. Histological lesions were observed, para- and transcellular intestinal permeability was measured in Ussing chambers. The expression levels of mRNA encoding six inflammatory cytokines (CCL20, IL-10, IL-1β, TNFα, IL-8 and IL-22) were determined by RT-PCR. The expressions of the phosphorylated MAP kinases p42/p44 and p38 were assessed by immunoblotting. Exposure to DON induced histological changes, significantly increased the expression of CCL20, IL-1β, TNFα, IL-8, IL-22 and IL-10, increased the intestinal paracellular permeability and activated MAP kinases. Incubation with L. rhamnosus alone did not have any significant effect. By contrast, the pre-incubation with L. rhamnosus reduced all the effects of DON: the histological alterations, the pro-inflammatory response, the paracellular permeability and the phosphorylation of MAP kinases. Of note, L. rhamnosus did not adsorb DON and only slightly degrade the toxin. In conclusion, L. rhamnosus RC007 is a promising probiotic which, included as feed additive, can decrease the intestinal toxicity of DON.




Similar content being viewed by others
References
Akbari P, Braber S, Gremmels H, Koelink PJ, Verheijden KAT, Garssen J, Fink-Gremmels J (2014) Deoxynivalenol: a trigger for intestinal integrity breakdown. FASEB J 28:2414–2429. doi:10.1096/fj.13-238717
Alassane-Kpembi I, Kolf-Clauw M, Gauthier T, Abrami R, Abiola FA, Oswald IP, Puel O (2013) New insight into mycotoxin mixtures: the toxicity of low doses of Type B trichothecenes against intestinal epithelial cells is synergistic. Toxicol Appl Pharmacol 272:191–198. doi:10.1016/j.taap.2013.05.023
Alassane-Kpembi I, Puel O, Pinton P, Cossalter AM, Chou TC, Oswald IP (2017) Co-exposure to low doses of the food contaminants deoxynivalenol and nivalenol has a synergistic inflammatory effect on intestinal explants. Arch Toxicol 91:2677–2687. doi:10.1007/s00204-016-1902-9
Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. doi:10.1128/CMR.16.3.497-516.2003
Cano P, Seeboth J, Meurens F, Cognie J, Abrami R, Oswald IP, Guzylack-Piriou L (2013) Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: an emerging hypothesis through possible modulation of Th17-mediated response. PLoS One 8:e53647. doi:10.1371/journal.pone.0053647
Chang C, Wang K, Zhou SN, Wang XD, Wu JE (2017) Protective effect of Saccharomyces boulardii on deoxynivalenol-induced injury of porcine macrophage via attenuating p38 MAPK signal pathway. Appl Biochem Biotechnol 182:411–427. doi:10.1007/s12010-016-2335-x
de Moreno de LeBlanc A, Chaves S, Carmuega E, Weill R, Antoine J, Perdigón G (2008) Effect of long-term continuous consumption of fermented milk containing probiotic bacteria on mucosal immunity and the activity of peritoneal macrophages. Immunobiology 213:97–108. doi:10.1016/j.imbio.2007.07.002
Dogi C, Maldonado Galdeano C, Perdigón G (2008) Gut immune stimulation by non-pathogenic Gram (+) and Gram (−) bacteria. Comparison with a probiotic strain. Cytokine 41:223–231. doi:10.1016/j.cyto.2007.11.014
Dogi C, Weill F, Perdigón G (2010) Immune response of non-pathogenic Gram (+) and Gram (−) bacteria in inductive sites of the intestinal mucosa. Study of the pathway of signaling involved. Immunobiology 215:60–69. doi:10.1016/j.imbio.2009.01.005
Dogi C, Garcia G, de Moreno de LeBlanc A, Greco C, Cavaglieri L (2016) Lactobacillus rhamnosus RC007 intended for feed additive: immune-stimulatory properties and ameliorating effects on TNBS-induced colitis. Benef Microbes 6:1–10. doi:10.3920/BM2015.0147
Döll S, Dänicke S (2004) In vivo detoxification of Fusarium toxins. Arch Anim Nutr 58:419–441. doi:10.1080/00039420400020066
EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain), Knutsen HK, Alexander J, Barregård L, Bignami M, Bruschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot A-C, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dorr B, Gkrillas A, Gustavsson N, van Manen M, Edler L (2017) Scientific opinion on the risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 15:4718. doi:10.2903/j.efsa.2017.4718
Ezema C (2013) Probiotics in animal production: a review. J Vet Med Anim Health 5:308–316. doi:10.5897/JVMAH2013.0201
Galdeano CM, de Moreno de LeBlanc A, Vinderola G, Bonet ME, Perdigón G (2007) Proposed model: mechanisms of immunomodulation induced by probiotic bacteria. Clin Vaccine Immunol 14:485–492. doi:10.1128/CVI.00406-06
Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF (2015) Review on mycotoxin issues in ruminants: occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 7:3057–3111. doi:10.3390/toxins7083057
Ghareeb K, Awad WA, Bohm J, Zebeli Q (2015) Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: poultry and swine. J Appl Toxicol 35:327–337. doi:10.1002/jat.3083
Grenier B, Applegate TJ (2013) Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins 5:396–430. doi:10.3390/toxins5020396
Grenier B, Bracarense AP, Schwartz HE, Trumel C, Cossalter AM, Schatzmayr G, Kolf-Clauw M, Moll WD, Oswald IP (2012) The low intestinal and hepatic toxicity of hydrolyzed fumonisin B1 correlates with its inability to alter the metabolism of sphingolipids. Biochem Pharmacol 83:1465–1473. doi:10.1016/j.bcp.2012.02.007
Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20. doi:10.1016/j.jaci.2009.05.038
Hardy H, Harris J, Lyon E, Beal J, Foey AD (2013) Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 5:1869–1912. doi:10.3390/nu5061869
Jijon H, Backer J, Diaz H, Yeung H, Thiel D, McKaigney C et al (2004) DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 126:1358–1373. doi:10.1053/j.gastro.2004.02.003
Joshi S, Platanias LC (2012) Mnk kinases in cytokine signaling and regulation of cytokine responses. Biomol Concepts 3:127–139. doi:10.1515/bmc-2011-2000
Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-g and RelA. Nat Immunol 5:104–112. doi:10.1038/ni1018
Kim HG, Lee SY, Kim NR, Ko MY, Lee JM, Yi TH et al (2008) Inhibitory effects of Lactobacillus plantarum lipoteichoic acid (LTA) on Staphylococcus aureus LTA-induced tumor necrosis factor-a production. J Microbiol Biotechnol 18:1191–1196
Koul HK, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4:342–359. doi:10.1177/1947601913507951
Lambert D, Padfield PJ, McLaughlin J, Cannell S, O’Neill CA (2007) Ochratoxin A displaces claudins from detergent resistant membrane microdomains. Biochem Biophys Res Commun 358:632–636. doi:10.1016/j.bbrc.2007.04.180
Lucioli J, Pinton P, Callu P, Laffitte J, Grosjean F, Kolf-Clauw M, Oswald IP, Bracarense AP (2013) The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: comparison of in vivo and ex vivo models. Toxicon 66:31–36. doi:10.1016/j.toxicon.2013.01.024
Meissonnier GM, Laffitte J, Raymond I, Benoit E, Cossalter AM, Pinton P, Bertin G, Oswald IP, Galtier P (2008) Subclinical doses of T-2 toxin impair acquired immune response and liver cytochrome P450 in pigs. Toxicology 247:46–54. doi:10.1016/j.tox.2008.02.003
Menningen R, Nolte K, Rijken E, Utech M, Loeffler B, Senninger N, Bruewer M (2009) Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 296:G1140–G1149. doi:10.1152/ajpgi.90534.2008
Nietfeld JC, Tyler DE, Harrison LR, Cole JR, Latimer KS, Crowell WA (1991) Culture and morphologic features of small intestinal mucosal explants from weaned pigs. Am J Vet Res 52:1142–1146
Osman N, Adawi D, Ahrné S, Jeppsson B, Molin G (2008) Probiotics and blueberry attenuate the severity of dextran sulfate sodium (DSS)-induced colitis. Dig Dis Sci 53:2464–2473. doi:10.1007/s10620-007-0174-x
Pan X, Whitten DA, Wu M, Chan C, Wilkerson CG, Pestka JJ (2013) Early phosphoproteomic changes in the mouse spleen during deoxynivalenol-induced ribotoxic stress. Toxicol Sci 135:129–143. doi:10.1093/toxsci/kft145
Pascale M, Panzarini G, Powers S, Visconti A (2014) Determination of deoxynivalenol and nivalenol in wheat by ultra-performance liquid chromatography/photodiode-array. Food Anal Method 7:555–562. doi:10.1007/s12161-013-9653-1
Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald IP (2016) Toxicology of deoxynivalenol and its acetylated and modified forms. Arch Toxicol 90:2931–2957. doi:10.1007/s00204-016-1826-4
Pestka JJ (2010) Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins (Basel) 2:1300–1317. doi:10.3390/toxins2061300
Pierron A, Mimoun S, Murate LS, Loiseau N, Lippi Y, Bracarense APFL, Schatzmayr G, He J, Zhou T, Moll WD, Oswald IP (2016a) Microbial biotransformation of DON: molecular basis for reduced toxicity. Sci Rep 6:29105. doi:10.1038/srep29105
Pierron A, Mimoun S, Murate LS, Loiseau N, Lippi Y, Bracarense APFL, Schatzmayr G, Berthiller F, Moll WD, Oswald IP (2016b) Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-d-glucoside. Arch Toxicol 90:2037–2046. doi:10.1007/s00204-015-1592-8
Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins 6:1615–1643. doi:10.3390/toxins6051615
Pinton P, Nougayrede JP, del Rio JC, Moreno C, Marin D, Ferrier L, Bracarense AP, Kolf-Clauw M, Oswald IP (2009) The food contaminant, deoxynivalenol, decreases intestinal barrier function and reduces claudin expression. Toxicol Appl Pharmacol 237:41–48. doi:10.1016/j.taap.2009.03.003
Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, Grosjean F, Bracarense AP, Kolf-Clauw M, Oswald IP (2012) Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junctions proteins and MAPKinases. Toxicol Sci 130:180–190. doi:10.1093/toxsci/kfs239
Pinton P, Graziani F, Pujol A, Nicoletti C, Paris O, Ernouf P, Di Pasquale E, Perrier J, Oswald IP, Maresca M (2015) Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistin-like molecule. Mol Nutr Food Res 59:1076–1087. doi:10.1002/mnfr.201500005
Resta-Lenert S, Barrett KE (2006) Probiotics and commensals reverse TNFa- and IFNg-induced dysfunction in human intestinal epithelial cells. Gastroenterology 130:731–746. doi:10.1053/j.gastro.2005.12.015
Robert H, Payros D, Pinton P, Théodorou V, Mercier-Bonin M, Oswald IP (2017) Impact of mycotoxins on the intestine: are mucus and microbiota new targets? J Toxicol Environ Health Part B Crit Rev 20:249–275. doi:10.1080/10937404.2017.1326071
Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R (2010) Deoxynivalenol and its toxicity. Interdiscip Toxicol 3:94–99. doi:10.2478/v10102-010-0019-x
Southcott E, Tooley KL, Howart GS, Davidsson GP, Butler RN (2008) Yoghurts containing probiotics reduce disruption of the small intestinal barrier in methotrexate-treated rats. Dig Dis Sci 53:1837–1841. doi:10.1007/s10620-008-0275-1
Springler A, Hessenberger S, Schatzmayr G, Mayer E (2016) Early activation of MAPK p44/42 is partially involved in DON-induced disruption of the intestinal barrier function and tight junction network. Toxins 8:264. doi:10.3390/toxins8090264
Turner PC, Hopton RP, Lecluse Y, White KL, Fisher J, Lebailly P (2010) Determinants of urinary deoxynivalenol and de-epoxy deoxynivalenol in male farmers from Normandy, France. J Agric Food Chem 58:5206–5212. doi:10.1021/jf100892v
Waché Y, Valat C, Postollec G, Bougeard S, Burel C, Oswald IP, Fravalo P (2009) Impact of deoxynivalenol on the intestinal microflora of pigs. Int J Mol Sci 10:1–17. doi:10.3390/ijms10010001
Watanabe T, Nishio H, Tanigawa T, Yamagami H, Okazaki H, Watanabe K et al (2009) Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid. Am J Physiol Gastrointest Liver Physiol 297:506–513. doi:10.1152/ajpgi.90553.2008
Weaver AC, See MT, Hansen JA, Kim YB, De Souza AL, Middleton TF, Kim SW (2013) The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. Toxins 5:1261–1281. doi:10.3390/toxins5071261
Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180
Yan F, Polk DB (2002) Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277:50959–50965. doi:10.1074/jbc.M207050200
Yang F, Hou C, Zeng X, Qiao S (2015) The use of lactic acid bacteria as a probiotic in swine diets. Pathogens 4:34–45. doi:10.3390/pathogens4010034
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Funding
This work was supported in part by the French ANR (Agence Nationale de la Recherche) projects ImBio (ANR-13-CESA-0003-03), CaDON (ANR-15-CE21-0001-02) and ANPCYT-PICT1606/12.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
García, G.R., Payros, D., Pinton, P. et al. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Arch Toxicol 92, 983–993 (2018). https://doi.org/10.1007/s00204-017-2083-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00204-017-2083-x


