Skip to main content
Log in

Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs3+) or its methylated metabolite, methylarsonite (MAs3+). The results show that 4-h exposures to iAs3+ and MAs3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs3+ and MAs3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs3+ and MAs3+. This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adeva-Andany MM, Gonzalez-Lucan M, Donapetry-Garcia C, Fernandez-Fernandez C, Ameneiros-Rodriguez E (2016) Glycogen metabolism in humans. BBA Clin 5:85–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Agius L (2015) Role of glycogen phosphorylase in liver glycogen metabolism. Mol Aspects Med 46:34–45

    Article  CAS  PubMed  Google Scholar 

  • Aiston S, Coghlan MP, Agius L (2003) Inactivation of phosphorylase is a major component of the mechanism by which insulin stimulates hepatic glycogen synthesis. Eur J Biochem 270:2773–2781

    Article  CAS  PubMed  Google Scholar 

  • Albores A, Cebrian ME, Garcia-Vargas GG, Connelly JC, Price SC, Hinton RH, Bach PH, Bridges JW (1996) Enhanced arsenite-induced hepatic morphological and biochemical changes in phenobarbital-pretreated rats. Toxicol Pathol 24:172–180

    Article  CAS  PubMed  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey KA, Wu MC, Ward WO, Smeester L, Rager JE, Garcia-Vargas G, Del Razo LM, Drobna Z, Styblo M, Fry RC (2013) Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. J Biochem Mol Toxicol 27:106–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry LJ, Smythe DS (1959) Carbohydrate metabolism in normal and altitude-exposed mice following arsenite poisoning. Am J Physiol 197:37–40

    CAS  PubMed  Google Scholar 

  • Chung ST, Hsia DS, Chacko SK, Rodriguez LM, Haymond MW (2014) Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes. Diabetologia 58:596–603

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 58:453–508

    Article  CAS  PubMed  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  CAS  PubMed  Google Scholar 

  • Dashty M (2013) A quick look at biochemistry: carbohydrate metabolism. Clin Biochem 46:1339–1352

    Article  CAS  PubMed  Google Scholar 

  • DePaoli-Roach AA, Vilardo PG, Kim JH, Mavila N, Vemuri B, Roach PJ (2003) Determination of mammalian glycogen synthase phosphatase activity. Methods Enzymol 366:17–34

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Villasenor A, Burns AL, Hiriart M, Cebrian ME, Ostrosky-Wegman P (2007) Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus. Toxicol Appl Pharmacol 225:123–133

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Villaseñor A, Sánchez-Soto MC, Cebrián ME, Ostrosky-Wegman P, Hiriart M (2006) Sodium arsenite impairs insulin secretion and transcription in pancreatic beta-cells. Toxicol Appl Pharmacol. 214(1):30–34

    Article  PubMed  Google Scholar 

  • Díaz-Villaseñor A, Burns AL, Salazar AM, Sordo M, Hiriart M, Cebrián ME, Ostrosky-Wegman P (2008) Arsenite reduces insulin secretion in rat pancreatic beta-cells by decreasing the calcium-dependent calpain-10 proteolysis of SNAP-25. Toxicol Appl Pharmacol. 231(3):291–299

    Article  PubMed  Google Scholar 

  • Douillet C, Currier J, Saunders J, Bodnar WM, Matousek T, Styblo M (2013) Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. Toxicol Appl Pharmacol 267:11–15

    Article  CAS  PubMed  Google Scholar 

  • Drobna Z, Walton FS, Paul DS, Xing W, Thomas DJ, Styblo M (2009) Metabolism of arsenic in human liver: the role of membrane transporters. Arch Toxicol 84:3–16

    Article  PubMed  Google Scholar 

  • Fu J, Woods CG, Yehuda-Shnaidman E, Zhang Q, Wong V, Collins S, Sun G, Andersen ME, Pi J (2010) Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect 118:864–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CF, Yang CY, Chan DC, Wang CC, Huang KH, Wu CC, Tsai KS, Yang RS, Liu SH (2015) Arsenic exposure and glucose intolerance/insulin resistance in estrogen-deficient female mice. Environ Health Perspect 123:1138–1144

    Article  PubMed  PubMed Central  Google Scholar 

  • Hue L, Bontemps F, Hers H (1975) The effects of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J 152:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imazu M, Strickland WG, Chrisman TD, Exton JH (1984a) Phosphorylation and inactivation of liver glycogen synthase by liver protein kinases. J Biol Chem 259:1813–1821

    CAS  PubMed  Google Scholar 

  • Imazu M, Strickland WG, Exton JH (1984b) Multiple phosphorylation of rat-liver glycogen synthase by protein kinases. Biochim Biophys Acta 789:285–293

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi I (1981) Studies on As2O3-induced hyperglycemia (author’s transl). Nihon Yakurigaku Zasshi 78:213–222

    Article  CAS  PubMed  Google Scholar 

  • Klover PJ, Mooney RA (2004) Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol 36:753–758

    Article  CAS  PubMed  Google Scholar 

  • Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Dalla Man C, Cobelli C, Cline GW, Shulman GI, Waldhausl W, Roden M (2004) Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 53:3048–3056

    Article  CAS  PubMed  Google Scholar 

  • Lin HV, Accili D (2011) Hormonal regulation of hepatic glucose production in health and disease. Cell Metab 14:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Guo X, Wu B, Yu H, Zhang X, Li M (2014) Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Sci Rep 4:6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, Silbergeld EK, Styblo M, Tseng CH, Thayer KA, Loomis D (2012) Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. Environ Health Perspect 120:1658–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E (2006) Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiological evidence. Environ Health Perspect 114:641–648

    Article  CAS  PubMed  Google Scholar 

  • Nuttall FQ, Gannon MC (1989) An improved assay for hepatic glycogen synthase in liver extracts with emphasis on synthase R. Anal Biochem 178:311–319

    Article  CAS  PubMed  Google Scholar 

  • Park SK, Peng Q, Bielak LF, Silver KD, Peyser PA, Mitchell BD (2016) Arsenic exposure is associated with diminished insulin sensitivity in non-diabetic Amish adults. Diabetes Metab Res Rev. 32(6):565–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul DS, Harmon AW, Devesa V, ThoMAs DJ, Styblo M (2007) Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. Environ Health Perspect 115:734–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peti W, Nairn AC, Page R (2012) Structural basis for protein phosphatase 1 regulation and specificity. FEBS J 280:596–611

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichl FX, Szinicz L, Kreppel H, Forth W (1988) Effect of arsenic on carbohydrate metabolism after single or repeated injection in guinea pigs. Arch Toxicol 62:473–475

    Article  CAS  PubMed  Google Scholar 

  • Reichl FX, Kreppel H, Szinicz L, Fichtl B, Forth W (1991) Effect of glucose treatment on carbohydrate content in various organs in mice after acute As2O3 poisoning. Vet Hum Toxicol 33:230–235

    CAS  PubMed  Google Scholar 

  • Rines AK, Sharabi K, Tavares CD, Puigserver P (2016) Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 15:786–804

    Article  CAS  PubMed  Google Scholar 

  • Roach PJ, Cheng C, Huang D, Lin A, Mu J, Skurat AV, Wilson W, Zhai L (1998) Novel aspects of the regulation of glycogen storage. J Basic Clin Physiol Pharmacol 9:139–151

    Article  CAS  PubMed  Google Scholar 

  • Rognstad R (1979) Rate-limiting steps of metabolic pathways. J Biol Chem 254:1875–1878

    CAS  PubMed  Google Scholar 

  • Ros S, Garcia-Rocha M, Dominguez J, Ferrer JC, Guinovart JJ (2009) Control of liver glycogen synthase activity and intracellular distribution by phosphorylation. J Biol Chem 284:6370–6378

    Article  CAS  PubMed  Google Scholar 

  • Rosella G, Zajac JD, Kaczmarczyk SJ, Andrikopoulos S, Proietto J (1993) Impaired suppression of gluconeogenesis induced by overexpression of a noninsulin-responsive phosphoenolpyruvate carboxykinase gene. Mol Endocrinol 7:1456–1462

    CAS  PubMed  Google Scholar 

  • Rylatt DB, Aitken A, Bilham T, Condon GD, Embi N, Cohen P (1980) Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase. Eur J Biochem 107:529–537

    Article  CAS  PubMed  Google Scholar 

  • Saheki S, Takeda A, Shimazu T (1985) Assay of inorganic phosphate in the mild pH range, suitable for measurement of glycogen phosphorylase activity. Anal Biochem 148:277–281

    Article  CAS  PubMed  Google Scholar 

  • Sharabi K, Tavares CD, Rines AK, Puigserver P (2015) Molecular pathophysiology of hepatic glucose production. Mol Aspects Med 46:21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Dutta SR, Passi D, Bharti J (2017) Benefits of alcohol on arsenic toxicity in rats. J Clin Diagn Res 11:BF01–BF06

    PubMed  PubMed Central  Google Scholar 

  • Spuches AM, Kruszyna HG, Rich AM, Wilcox DE (2005) Thermodynamics of the As(III)-thiol interaction: arsenite and monomethylarsenite complexes with glutathione, dihydrolipoic acid, and other thiol ligands. Inorg Chem 44:2964–2972

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Pandey SK (1998) Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin. Mol Cell Biochem 182:135–141

    Article  CAS  PubMed  Google Scholar 

  • Stalmans W, Hers HG (1975) The stimulation of liver phosphorylase b by AMP, fluoride and sulfate. A technical note on the specific determination of the a and b forms of liver glycogen phosphorylase. Eur J Biochem 54:341–350

    Article  CAS  PubMed  Google Scholar 

  • Steffens AA, Hong GM, Bain LJ (2010) Sodium arsenite delays the differentiation of C2C12 mouse myoblast cells and alters methylation patterns on the transcription factor myogenin. Toxicol Appl Pharmacol 250:154–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in human cells. Arch Toxicol 74:289–299

    Article  CAS  PubMed  Google Scholar 

  • Sung TC, Huang JW, Guo HR (2015) Association between arsenic exposure and diabetes: a meta-analysis. Biomed Res Int 2015:368087

    PubMed  PubMed Central  Google Scholar 

  • Thomas JA, Schlender KK, Larner J (1968) A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem 25:486–499

    Article  CAS  PubMed  Google Scholar 

  • Thomas DJ, Li J, Waters SB, Xing W, Adair BM, Drobna Z, Devesa V, Styblo M (2007) Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp Biol Med (Maywood). 232:3–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng CH (2004) The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicol Appl Pharmacol. 197(2):67–83

    Article  CAS  PubMed  Google Scholar 

  • Verma RJ, Vasu A, Saiyed AA (2004) Arsenic toxicity in mice and its possible amelioration. J Environ Sci (China) 16:447–453

    CAS  Google Scholar 

  • Walton FS, Harmon AW, Paul DS, Drobna Z, Patel YM, Styblo M (2004) Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicol Appl Pharmacol 198:424–433

    Article  CAS  PubMed  Google Scholar 

  • Wang ZX, Jiang CS, Liu L, Wang XH, Jin HJ, Wu Q, Chen Q (2005) The role of Akt on arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation. Cell Res 15:379–386

    Article  CAS  PubMed  Google Scholar 

  • Wauson EM, Langan AS, Vorce RL (2002) Sodium arsenite inhibits and reverses expression of adipogenic and fat cell-specific genes during in vitro adipogenesis. Toxicol Sci 65:211–219

    Article  CAS  PubMed  Google Scholar 

  • Welsh GI, Wilson C, Proud CG (1996) GSK3: a SHAGGY frog story. Trends Cell Biol 6:274–279

    Article  CAS  PubMed  Google Scholar 

  • Xue P, Hou Y, Zhang Q, Woods CG, Yarborough K, Liu H, Sun G, Andersen ME, Pi J (2011) Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response. Biochem Biophys Res Commun 407:360–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH (2010) Arsenic inhibits myogenic differentiation and muscle regeneration. Environ Health Perspect 118:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wendel AA, Keogh MR, Harris TE, Chen J, Coleman RA (2012) Glycerolipid signals alter mTOR complex 2 (mTORC2) to diminish insulin signaling. Proc Natl Acad Sci U S A 109:1667–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Cooper DE, Grevengoed TJ, Li LO, Klett EL, Eaton JM, Harris TE, Coleman RA (2014) Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor. Am J Physiol Endocrinol Metab 307:E305–E315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Institute of Health (R01ES022697 and DK 056350). The authors thank Dr. Rosalind Coleman (Department of Nutrition, University of North Carolina at Chapel Hill) for her helpful suggestions regarding the methods used in this study and result interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Stýblo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Fennel, E.M.J., Douillet, C. et al. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes. Arch Toxicol 91, 3811–3821 (2017). https://doi.org/10.1007/s00204-017-2076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2076-9

Keywords

Navigation