Archives of Toxicology

, Volume 92, Issue 2, pp 759–775 | Cite as

t-BuOOH induces ferroptosis in human and murine cell lines

  • Christine Wenz
  • Dagmar Faust
  • Berenike Linz
  • Christian Turmann
  • Teodora Nikolova
  • John Bertin
  • Peter Gough
  • Peter Wipf
  • Anna Sophia Schröder
  • Stefan Krautwald
  • Cornelia Dietrich
Molecular Toxicology


Reactive oxygen species (ROS)-induced apoptosis has been extensively studied. Increasing evidence suggests that ROS, for instance, induced by hydrogen peroxide (H2O2), might also trigger regulated necrotic cell death pathways. Almost nothing is known about the cell death pathways triggered by tertiary-butyl hydroperoxide (t-BuOOH), a widely used inducer of oxidative stress. The lipid peroxidation products induced by t-BuOOH are involved in the pathophysiology of many diseases, such as cancer, cardiovascular diseases, or diabetes. In this study, we exposed murine fibroblasts (NIH3T3) or human keratinocytes (HaCaT) to t-BuOOH (50 or 200 μM, respectively) which induced a rapid necrotic cell death. Well-established regulators of cell death, i.e., p53, poly(ADP)ribose polymerase-1 (PARP-1), the stress kinases p38 and c-Jun N-terminal-kinases 1/2 (JNK1/2), or receptor-interacting serine/threonine protein kinase 1 (RIPK1) and 3 (RIPK3), were not required for t-BuOOH-mediated cell death. Using the selective inhibitors ferrostatin-1 (1 μM) and liproxstatin-1 (1 μM), we identified ferroptosis, a recently discovered cell death mechanism dependent on iron and lipid peroxidation, as the main cell death pathway. Accordingly, t-BuOOH exposure resulted in a ferrostatin-1- and liproxstatin-1-sensitive increase in lipid peroxidation and cytosolic ROS. Ferroptosis was executed independently from other t-BuOOH-mediated cellular damages, i.e., loss of mitochondrial membrane potential, DNA double-strand breaks, or replication block. H2O2 did not cause ferroptosis at equitoxic concentrations (300 μM) and induced a (1) lower and (2) ferrostatin-1- or liproxstatin-1-insensitive increase in lipid peroxidation. We identify that t-BuOOH and H2O2 produce a different pattern of lipid peroxidation, thereby leading to different cell death pathways and present t-BuOOH as a novel inducer of ferroptosis.


Oxidative stress t-BuOOH Ferroptosis Lipid peroxidation 



We thank Bernd Epe for fruitful discussions. We are indebted to Anna Frumkina for expert technical assistance. The technical support by Julia Altmaier, FACS, and Array Core Facility is gratefully acknowledged. The work was supported by the Stipendienstiftung Rheinland-Pfalz, Hoffmann-Klose-Stiftung, Johannes Gutenberg-University, and University Medical Center of the Johannes Gutenberg-University and is part of the Ph.D. thesis of CW and the MD theses of BL, CT, and ASS. SK acknowledges support from Dr. Werner Jackstädt-Stiftung and Fresenius Medical Care Germany.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

204_2017_2066_MOESM1_ESM.pdf (7.9 mb)
Supplementary material 1 (PDF 8048 kb)


  1. Alia M, Ramos S, Mateos R, Bravo L, Goya L (2005) Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J Biochem Mol Toxicol 19(2):119–128. doi: 10.1002/jbt.20061 PubMedCrossRefGoogle Scholar
  2. Amoroso S, D’Alessio A, Sirabella R, Di Renzo G, Annunziato L (2002) Ca(2+)-independent caspase-3 but not Ca(2+)-dependent caspase-2 activation induced by oxidative stress leads to SH-SY5Y human neuroblastoma cell apoptosis. J Neurosci Res 68(4):454–462. doi: 10.1002/jnr.10199 PubMedCrossRefGoogle Scholar
  3. Andrabi SA, Dawson TM, Dawson VL (2008) Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci 1147:233–241. doi: 10.1196/annals.1427.014 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434(2):201–210. doi: 10.1042/BJ20101695 PubMedCrossRefGoogle Scholar
  5. Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438. doi: 10.1155/2014/360438 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662. doi: 10.1038/nature03434 PubMedCrossRefGoogle Scholar
  7. Baker MA, He SQ (1991) Elaboration of cellular DNA breaks by hydroperoxides. Free Radic Biol Med 11(6):563–572PubMedCrossRefGoogle Scholar
  8. Barr DP, Mason RP (1995) Mechanism of radical production from the reaction of cytochrome c with organic hydroperoxides. An ESR spin trapping investigation. J Biol Chem 270(21):12709–12716PubMedCrossRefGoogle Scholar
  9. Bennett BL, Sasaki DT, Murray BW et al (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98(24):13681–13686. doi: 10.1073/pnas.251194298 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10(14):1611–1626PubMedCrossRefGoogle Scholar
  11. Berger SB, Harris P, Nagilla R et al (2015) Characterization of GSK’963: a structurally distinct, potent and selective inhibitor of RIP1 kinase. Cell Death Discov 1:15009. doi: 10.1038/cddiscovery.2015.9 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106(3):761–771PubMedCrossRefGoogle Scholar
  13. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73(11–12):2195–2209. doi: 10.1007/s00018-016-2194-1 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cheng Z, Li Y (2007) What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update. Chem Rev 107(3):748–766. doi: 10.1021/cr040077w PubMedCrossRefGoogle Scholar
  15. Chiu LY, Ho FM, Shiah SG, Chang Y, Lin WW (2011) Oxidative stress initiates DNA damager MNNG-induced poly(ADP-ribose)polymerase-1-dependent parthanatos cell death. Biochem Pharmacol 81(3):459–470. doi: 10.1016/j.bcp.2010.10.016 PubMedCrossRefGoogle Scholar
  16. Coleman JB, Gilfor D, Farber JL (1989) Dissociation of the accumulation of single-strand breaks in DNA from the killing of cultured hepatocytes by an oxidative stress. Mol Pharmacol 36(1):193–200PubMedGoogle Scholar
  17. Conrad M, Angeli JP, Vandenabeele P, Stockwell BR (2016) Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 15(5):348–366. doi: 10.1038/nrd.2015.6 PubMedCrossRefGoogle Scholar
  18. Cuenda A, Rouse J, Doza YN et al (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364(2):229–233PubMedCrossRefGoogle Scholar
  19. Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119. doi: 10.1038/nchembio711 PubMedCrossRefGoogle Scholar
  20. Deng X, Xiao L, Lang W, Gao F, Ruvolo P, May WS Jr (2001) Novel role for JNK as a stress-activated Bcl2 kinase. J Biol Chem 276(26):23681–23688. doi: 10.1074/jbc.M100279200 PubMedCrossRefGoogle Scholar
  21. Dietrich C, Wallenfang K, Oesch F, Wieser R (1997) Differences in the mechanisms of growth control in contact-inhibited and serum-deprived human fibroblasts. Oncogene 15(22):2743–2747. doi: 10.1038/sj.onc.1201439 PubMedCrossRefGoogle Scholar
  22. Dixon SJ (2017) Ferroptosis: bug or feature? Immunol Rev 277(1):150–157. doi: 10.1111/imr.12533 PubMedCrossRefGoogle Scholar
  23. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. doi: 10.1016/j.cell.2012.03.042 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dixon SJ, Patel DN, Welsch M et al (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3:e02523. doi: 10.7554/eLife.02523 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Doll S, Proneth B, Tyurina YY et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98. doi: 10.1038/nchembio.2239 PubMedCrossRefGoogle Scholar
  26. Dondelinger Y, Declercq W, Montessuit S et al (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7(4):971–981. doi: 10.1016/j.celrep.2014.04.026 PubMedCrossRefGoogle Scholar
  27. Dong T, Liao D, Liu X, Lei X (2015) Using small molecules to dissect non-apoptotic programmed cell death: necroptosis, ferroptosis, and pyroptosis. ChemBioChem 16(18):2557–2561. doi: 10.1002/cbic.201500422 PubMedCrossRefGoogle Scholar
  28. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR (2015) Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2(5):517–532. doi: 10.18632/oncoscience.160 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Faust D, Nikolova T, Watjen W, Kaina B, Dietrich C (2017) The Brassica-derived phytochemical indolo[3,2-b]carbazole protects against oxidative DNA damage by aryl hydrocarbon receptor activation. Arch Toxicol 91(2):967–982. doi: 10.1007/s00204-016-1672-4 PubMedCrossRefGoogle Scholar
  30. Friedemann T, Otto B, Klatschke K et al (2014) Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells. J Ethnopharmacol 155(1):607–615. doi: 10.1016/j.jep.2014.06.004 PubMedCrossRefGoogle Scholar
  31. Friedmann Angeli JP, Schneider M, Proneth B et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191. doi: 10.1038/ncb3064 PubMedCrossRefGoogle Scholar
  32. Fu D, Jordan JJ, Samson LD (2013) Human ALKBH7 is required for alkylation and oxidation-induced programmed necrosis. Genes Dev 27(10):1089–1100. doi: 10.1101/gad.215533.113 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fulda S (2014) Therapeutic exploitation of necroptosis for cancer therapy. Semin Cell Dev Biol 35:51–56. doi: 10.1016/j.semcdb.2014.07.002 PubMedCrossRefGoogle Scholar
  34. Gaballah M, Slisz M, Hutter-Lobo D (2012) Role of JNK-1 regulation in the protection of contact-inhibited fibroblasts from oxidative stress. Mol Cell Biochem 359(1–2):105–113. doi: 10.1007/s11010-011-1004-1 PubMedCrossRefGoogle Scholar
  35. Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120. doi: 10.1038/cdd.2011.96 PubMedCrossRefGoogle Scholar
  36. Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A (2014) Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 35:24–32. doi: 10.1016/j.semcdb.2014.02.006 PubMedCrossRefGoogle Scholar
  37. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308. doi: 10.1016/j.molcel.2015.06.011 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016) Ferroptosis is an autophagic cell death process. Cell Res 26(9):1021–1032. doi: 10.1038/cr.2016.95 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Garcia-Cohen EC, Marin J, Diez-Picazo LD, Baena AB, Salaices M, Rodriguez-Martinez MA (2000) Oxidative stress induced by tert-butyl hydroperoxide causes vasoconstriction in the aorta from hypertensive and aged rats: role of cyclooxygenase-2 isoform. J Pharmacol Exp Ther 293(1):75–81PubMedGoogle Scholar
  40. Geserick P, Wang J, Schilling R et al (2015) Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis 6:e1884. doi: 10.1038/cddis.2015.240 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Giorgio V, Soriano ME, Basso E et al (2010) Cyclophilin D in mitochondrial pathophysiology. Biochem Biophys Acta 1797(6–7):1113–1118. doi: 10.1016/j.bbabio.2009.12.006 PubMedGoogle Scholar
  42. Gong YN, Guy C, Olauson H et al (2017) ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169(2):286–300.e16. doi: 10.1016/j.cell.2017.03.020 PubMedCrossRefGoogle Scholar
  43. Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 96(24):13978–13982PubMedPubMedCentralCrossRefGoogle Scholar
  44. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831. doi: 10.1016/j.yjmcc.2009.02.021 PubMedCrossRefGoogle Scholar
  45. Hampton MB, Orrenius S (1997) Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 414(3):552–556PubMedCrossRefGoogle Scholar
  46. Hix S, Kadiiska MB, Mason RP, Augusto O (2000) In vivo metabolism of tert-butyl hydroperoxide to methyl radicals. EPR spin-trapping and DNA methylation studies. Chem Res Toxicol 13(10):1056–1064PubMedCrossRefGoogle Scholar
  47. Ji J, Kline AE, Amoscato A et al (2012) Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat Neurosci 15(10):1407–1413. doi: 10.1038/nn.3195 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jiang L, Hickman JH, Wang SJ, Gu W (2015a) Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses. Cell Cycle (Georgetown, Tex) 14(18):2881–2885. doi: 10.1080/15384101.2015.1068479 CrossRefGoogle Scholar
  49. Jiang L, Kon N, Li T et al (2015b) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62. doi: 10.1038/nature14344 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kabiraj P, Valenzuela CA, Marin JE et al (2015) The neuroprotective role of ferrostatin-1 under rotenone-induced oxidative stress in dopaminergic neuroblastoma cells. Protein J 34(5):349–358. doi: 10.1007/s10930-015-9629-7 PubMedCrossRefGoogle Scholar
  51. Kagan VE, Mao G, Qu F et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90. doi: 10.1038/nchembio.2238 PubMedCrossRefGoogle Scholar
  52. Kanupriya Prasad D, Sai Ram M, Sawhney RC, Ilavazhagan G, Banerjee PK (2007) Mechanism of tert-butylhydroperoxide induced cytotoxicity in U-937 macrophages by alteration of mitochondrial function and generation of ROS. Toxicol In Vitro 21(5):846–854. doi: 10.1016/j.tiv.2007.02.007 PubMedCrossRefGoogle Scholar
  53. Kers J, Leemans JC, Linkermann A (2016) An overview of pathways of regulated necrosis in acute kidney injury. Semin Nephrol 36(3):139–152. doi: 10.1016/j.semnephrol.2016.03.002 PubMedCrossRefGoogle Scholar
  54. Kim OS, Kim YS, Jang DS, Yoo NH, Kim JS (2009) Cytoprotection against hydrogen peroxide-induced cell death in cultured mouse mesangial cells by erigeroflavanone, a novel compound from the flowers of Erigeron annuus. Chem Biol Interact 180(3):414–420PubMedCrossRefGoogle Scholar
  55. Koo GB, Morgan MJ, Lee DG et al (2015) Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res 25(6):707–725. doi: 10.1038/cr.2015.56 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Krainz T, Gaschler MM, Lim C, Sacher JR, Stockwell BR, Wipf P (2016) A mitochondrial-targeted nitroxide is a potent inhibitor of ferroptosis. ACS Cent Sci 2(9):653–659. doi: 10.1021/acscentsci.6b00199 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kramer OH, Knauer SK, Zimmermann D, Stauber RH, Heinzel T (2008) Histone deacetylase inhibitors and hydroxyurea modulate the cell cycle and cooperatively induce apoptosis. Oncogene 27(6):732–740. doi: 10.1038/sj.onc.1210677 PubMedCrossRefGoogle Scholar
  58. Kreuzaler P, Watson CJ (2012) Killing a cancer: what are the alternatives? Nat Rev Cancer 12(6):411–424. doi: 10.1038/nrc3264 PubMedCrossRefGoogle Scholar
  59. Lackinger D, Eichhorn U, Kaina B (2001) Effect of ultraviolet light, methyl methanesulfonate and ionizing radiation on the genotoxic response and apoptosis of mouse fibroblasts lacking c-Fos, p53 or both. Mutagenesis 16(3):233–241PubMedCrossRefGoogle Scholar
  60. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685PubMedCrossRefGoogle Scholar
  61. Lehman TA, Modali R, Boukamp P et al (1993) p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14(5):833–839PubMedCrossRefGoogle Scholar
  62. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185(8):1481–1486PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lemasters JJ, Nieminen AL (1997) Mitochondrial oxygen radical formation during reductive and oxidative stress to intact hepatocytes. Biosci Rep 17(3):281–291PubMedCrossRefGoogle Scholar
  64. Linden A, Gulden M, Martin HJ, Maser E, Seibert H (2008) Peroxide-induced cell death and lipid peroxidation in C6 glioma cells. Toxicol In Vitro 22(5):1371–1376. doi: 10.1016/j.tiv.2008.02.003 PubMedCrossRefGoogle Scholar
  65. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370(5):455–465. doi: 10.1056/NEJMra1310050 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Linkermann A, Brasen JH, Darding M et al (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA 110(29):12024–12029. doi: 10.1073/pnas.1305538110 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Linkermann A, Skouta R, Himmerkus N et al (2014a) Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA 111(47):16836–16841. doi: 10.1073/pnas.1415518111 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Linkermann A, Stockwell BR, Krautwald S, Anders HJ (2014b) Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 14(11):759–767. doi: 10.1038/nri3743 PubMedCrossRefGoogle Scholar
  69. Lips J, Kaina B (2001) DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts. Carcinogenesis 22(4):579–585PubMedCrossRefGoogle Scholar
  70. Magtanong L, Ko PJ, Dixon SJ (2016) Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ 23(7):1099–1109. doi: 10.1038/cdd.2016.25 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mandal P, Berger SB, Pillay S et al (2014) RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell 56(4):481–495. doi: 10.1016/j.molcel.2014.10.021 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Martin C, Martinez R, Navarro R, Ruiz-Sanz JI, Lacort M, Ruiz-Larrea MB (2001) tert-Butyl hydroperoxide-induced lipid signaling in hepatocytes: involvement of glutathione and free radicals. Biochem Pharmacol 62(6):705–712PubMedCrossRefGoogle Scholar
  73. Martin MA, Serrano AB, Ramos S, Pulido MI, Bravo L, Goya L (2010) Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells. J Nutr Biochem 21(3):196–205. doi: 10.1016/j.jnutbio.2008.10.009 PubMedCrossRefGoogle Scholar
  74. Masaki N, Kyle ME, Farber JL (1989) tert-Butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. Arch Biochem Biophys 269(2):390–399PubMedCrossRefGoogle Scholar
  75. Menear KA, Adcock C, Boulter R et al (2008) 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin- 1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51(20):6581–6591. doi: 10.1021/jm8001263 PubMedCrossRefGoogle Scholar
  76. Mohammad RM, Muqbil I, Lowe L et al (2015) Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 35(Suppl):S78–S103. doi: 10.1016/j.semcancer.2015.03.001 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Montero J, Dutta C, van Bodegom D, Weinstock D, Letai A (2013) p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ 20(11):1465–1474. doi: 10.1038/cdd.2013.52 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Muller T, Dewitz C, Schmitz J et al (2017) Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. doi: 10.1007/s00018-017-2547-4 PubMedCentralGoogle Scholar
  79. Nicotera P, Melino G (2004) Regulation of the apoptosis-necrosis switch. Oncogene 23(16):2757–2765. doi: 10.1038/sj.onc.1207559 PubMedCrossRefGoogle Scholar
  80. Ou Y, Wang SJ, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 113(44):E6806–E6812. doi: 10.1073/pnas.1607152113 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pereira L, Igea A, Canovas B, Dolado I, Nebreda AR (2013) Inhibition of p38 MAPK sensitizes tumour cells to cisplatin-induced apoptosis mediated by reactive oxygen species and JNK. EMBO Mol Med 5(11):1759–1774. doi: 10.1002/emmm.201302732 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochem Biophys Acta 12(1863):2977–2992. doi: 10.1016/j.bbamcr.2016.09.012 CrossRefGoogle Scholar
  83. Roos WP, Thomas AD, Kaina B (2016) DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16(1):20–33. doi: 10.1038/nrc.2015.2 PubMedCrossRefGoogle Scholar
  84. Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 89(1–2):115–124PubMedCrossRefGoogle Scholar
  85. Saito Y, Nishio K, Ogawa Y et al (2006) Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radical Res 40(6):619–630. doi: 10.1080/10715760600632552 CrossRefGoogle Scholar
  86. Schrell UM, Rittig MG, Anders M et al (1997) Hydroxyurea for treatment of unresectable and recurrent meningiomas. I. Inhibition of primary human meningioma cells in culture and in meningioma transplants by induction of the apoptotic pathway. J Neurosurg 86(5):845–852. doi: 10.3171/jns.1997.86.5.0845 PubMedCrossRefGoogle Scholar
  87. Sedelnikova OA, Redon CE, Dickey JS, Nakamura AJ, Georgakilas AG, Bonner WM (2010) Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res 704(1–3):152–159. doi: 10.1016/j.mrrev.2009.12.005 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Seiwert TY, Salama JK, Vokes EE (2007) The chemoradiation paradigm in head and neck cancer. Nat Clin Pract Oncol 4(3):156–171. doi: 10.1038/ncponc0750 PubMedCrossRefGoogle Scholar
  89. Shen HM, Lin Y, Choksi S et al (2004) Essential roles of receptor-interacting protein and TRAF2 in oxidative stress-induced cell death. Mol Cell Biol 24(13):5914–5922. doi: 10.1128/MCB.24.13.5914-5922.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Skouta R, Dixon SJ, Wang J et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136(12):4551–4556. doi: 10.1021/ja411006a PubMedPubMedCentralCrossRefGoogle Scholar
  91. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85PubMedCrossRefGoogle Scholar
  92. Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, LLeonart ME (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12(1):376–390. doi: 10.1016/j.arr.2012.10.004 PubMedCrossRefGoogle Scholar
  93. Stauber RH, Knauer SK, Habtemichael N et al (2012) A combination of a ribonucleotide reductase inhibitor and histone deacetylase inhibitors downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer. Oncotarget 3(1):31–43. doi: 10.18632/oncotarget.430 PubMedCrossRefGoogle Scholar
  94. Temkin V, Huang Q, Liu H, Osada H, Pope RM (2006) Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol 26(6):2215–2225. doi: 10.1128/MCB.26.6.2215-2225.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Tonnus W, Linkermann A (2017) The in vivo evidence for regulated necrosis. Immunol Rev 277(1):128–149. doi: 10.1111/imr.12551 PubMedCrossRefGoogle Scholar
  96. Torii S, Shintoku R, Kubota C et al (2016) An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J 473(6):769–777. doi: 10.1042/BJ20150658 PubMedCrossRefGoogle Scholar
  97. Vanden Berghe T, Vanlangenakker N, Parthoens E et al (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17(6):922–930. doi: 10.1038/cdd.2009.184 PubMedCrossRefGoogle Scholar
  98. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147. doi: 10.1038/nrm3737 PubMedCrossRefGoogle Scholar
  99. Vandenabeele P, Grootjans S, Callewaert N, Takahashi N (2013) Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death Differ 20(2):185–187. doi: 10.1038/cdd.2012.151 PubMedCrossRefGoogle Scholar
  100. Vanlangenakker N, Vanden Berghe T, Vandenabeele P (2012) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 19(1):75–86. doi: 10.1038/cdd.2011.164 PubMedCrossRefGoogle Scholar
  101. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149(7):1536–1548. doi: 10.1016/j.cell.2012.05.014 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Vroegop SM, Decker DE, Buxser SE (1995) Localization of damage induced by reactive oxygen species in cultured cells. Free Radic Biol Med 18(2):141–151PubMedCrossRefGoogle Scholar
  103. Wang Y (2008) Bulky DNA lesions induced by reactive oxygen species. Chem Res Toxicol 21(2):276–281. doi: 10.1021/tx700411g PubMedCrossRefGoogle Scholar
  104. Wang Y, Dawson VL, Dawson TM (2009) Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol 218(2):193–202. doi: 10.1016/j.expneurol.2009.03.020 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1–2):228–243. doi: 10.1016/j.cell.2011.11.030 PubMedCrossRefGoogle Scholar
  106. Watanabe T, Sekine S, Naguro I, Sekine Y, Ichijo H (2015) Apoptosis signal-regulating kinase 1 (ASK1)-p38 pathway-dependent cytoplasmic translocation of the orphan nuclear receptor NR4A2 is required for oxidative stress-induced necrosis. J Biol Chem 290(17):10791–10803. doi: 10.1074/jbc.M114.623280 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wipf P, Xiao J, Jiang J et al (2005) Mitochondrial targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin-TEMPO conjugates. J Am Chem Soc 127(36):12460–12461. doi: 10.1021/ja053679l PubMedCrossRefGoogle Scholar
  108. Xia Y, Ongusaha P, Lee SW, Liou YC (2009) Loss of Wip1 sensitizes cells to stress- and DNA damage-induced apoptosis. J Biol Chem 284(26):17428–17437. doi: 10.1074/jbc.M109.007823 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Xie Y, Hou W, Song X et al (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. doi: 10.1038/cdd.2015.158 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Xu H, Luo P, Zhao Y et al (2013) Iduna protects HT22 cells from hydrogen peroxide-induced oxidative stress through interfering poly(ADP-ribose) polymerase-1-induced cell death (parthanatos). Cell Signal 25(4):1018–1026. doi: 10.1016/j.cellsig.2013.01.006 PubMedCrossRefGoogle Scholar
  111. Yagoda N, von Rechenberg M, Zaganjor E et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447(7146):864–868. doi: 10.1038/nature05859 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176. doi: 10.1016/j.tcb.2015.10.014 PubMedCrossRefGoogle Scholar
  113. Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. doi: 10.1016/j.cell.2013.12.010 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113(34):E4966–E4975. doi: 10.1073/pnas.1603244113 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zhang S, Lin Y, Kim YS, Hande MP, Liu ZG, Shen HM (2007) c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly(ADP-ribose) polymerase-1 activation. Cell Death Differ 14(5):1001–1010. doi: 10.1038/sj.cdd.4402088 PubMedGoogle Scholar
  116. Zhang DW, Zheng M, Zhao J et al (2011) Multiple death pathways in TNF-treated fibroblasts: RIP3- and RIP1-dependent and independent routes. Cell Res 21(2):368–371. doi: 10.1038/cr.2011.3 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zilka O, Shah R, Li B et al (2017) On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci 3(3):232–243. doi: 10.1021/acscentsci.7b00028 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Christine Wenz
    • 1
  • Dagmar Faust
    • 1
  • Berenike Linz
    • 1
  • Christian Turmann
    • 1
  • Teodora Nikolova
    • 1
  • John Bertin
    • 2
  • Peter Gough
    • 2
  • Peter Wipf
    • 3
  • Anna Sophia Schröder
    • 4
  • Stefan Krautwald
    • 4
  • Cornelia Dietrich
    • 1
  1. 1.Institute of ToxicologyUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany
  2. 2.Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic AreaGlaxoSmithKlineCollegevilleUSA
  3. 3.Department of ChemistryUniversity of PittsburghPittsburghUSA
  4. 4.Department of Nephrology and HypertensionUniversity Hospital Schleswig-HolsteinKielGermany

Personalised recommendations