Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations

Abstract

Prediction and management of drug-induced renal injury (DIRI) rely on the knowledge of the mechanisms of drug insult and on the availability of appropriate animal models to explore it. Zebrafish (Danio rerio) offers unique advantages for assessing DIRI because the larval pronephric kidney has a high homology with its human counterpart and it is fully mature at 3.5 days post-fertilization. Herein, we aimed to evaluate the usefulness of zebrafish larvae as a model of renal tubular toxicity through a comprehensive analysis of the renal alterations induced by the lethal concentrations for 10% of the larvae for gentamicin, paracetamol and tenofovir. We evaluated drug metabolic profile by mass spectrometry, renal function with the inulin clearance assay, the 3D morphology of the proximal convoluted tubule by two-photon microscopy and the ultrastructure of proximal convoluted tubule mitochondria by transmission electron microscopy. Paracetamol was metabolized by conjugation and oxidation with further detoxification with glutathione. Renal clearance was reduced with gentamicin and paracetamol. Proximal tubules were enlarged with paracetamol and tenofovir. All drugs induced mitochondrial alterations including dysmorphic shapes (“donuts”, “pancakes” and “rods”), mitochondrial swelling, cristae disruption and/or loss of matrix granules. These results are in agreement with the tubular effects of gentamicin, paracetamol and tenofovir in man and demonstrate that zebrafish larvae might be a good model to assess functional and structural damage associated with DIRI.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arpagaus S, Rawyler A, Braendle R (2002) Occurrence and characteristics of the mitochondrial permeability transition in plants. J Biol Chem 277:1780–1787

    CAS  Article  PubMed  Google Scholar 

  2. Basile D, Anderson M, Sutton T (2012) Pathophysiology of acute kidney injury. Compr Physiol 2:1303–1353

    PubMed  PubMed Central  Google Scholar 

  3. Bonventre J, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121:4210–4221

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Chevalier RL (2016) The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol 311:F145–F161

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Cianciolo Cosentino C, Skrypnyk NI, Brilli LL et al (2013) Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 24:943–953

    Article  PubMed  PubMed Central  Google Scholar 

  6. Clarot I, Chaimbault P, Hasdenteufel F et al (2004) Determination of gentamicin sulfate and related compounds by high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 1031:281–287

    CAS  Article  PubMed  Google Scholar 

  7. Cook SF, King AD, van den Anker JN, Wilkins DG (2015) Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: method validation and application to a neonatal pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 1007:30–42

    CAS  Article  PubMed  Google Scholar 

  8. Drummond IA, Davidson AJ (2010) Zebrafish kidney development. In: Detrich HW, Westerfiled M, Zon LI (eds) Methods in cell biology. Elsevier Inc., Third Edit, pp 233–260

    Google Scholar 

  9. Galloway CA, Yoon Y (2012) Perspectives on: SGP symposium on mitochondrial physiology and medicine: what comes first, misshape or dysfunction? The view from metabolic excess. J Gen Physiol 139:455–463

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Gemer O, Zaltztein E, Gorodischer R (1983) Absorption of orally administered gentamicin in infants with diarrhea. Pediatr Pharmacol (New York) 3:119–123

    CAS  Google Scholar 

  11. Goldstone JV, McArthur AG, Kubota A et al (2010) Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genomics 11:643

    Article  PubMed  PubMed Central  Google Scholar 

  12. Graham GG, Scott KF (2005) Mechanism of action of paracetamol. Am J Ther 12:46–55

    Article  PubMed  Google Scholar 

  13. Hentschel DM, Park KM, Cilenti L et al (2005) Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Ren Physiol 288:F923–F929

    CAS  Article  Google Scholar 

  14. Herlitz LC, Mohan S, Stokes MB et al (2010) Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int 78:1171–1177

    CAS  Article  PubMed  Google Scholar 

  15. Hill A, Mesens N, Steemans M et al (2012) Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development. Drug Metab Rev 44:127–140

    CAS  Article  PubMed  Google Scholar 

  16. Huang SM, Xu F, Lam SH et al (2013) Metabolomics of developing zebrafish embryos using gas chromatography- and liquid chromatography-mass spectrometry. Mol BioSyst 9:1372–1380

    CAS  Article  PubMed  Google Scholar 

  17. Kersten S, Arjona FJ (2017) Ion transport in the zebrafish kidney from a human disease angle: possibilities, considerations, and future perspectives. Am J Physiol Renal Physiol 312:F172–F189

    CAS  Article  PubMed  Google Scholar 

  18. Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA (2005) Organization of the pronephric filtration apparatus in zebrafish requires nephrin, podocin and the FERM domain protein Mosaic eyes. Dev Biol 285:316–329

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struc Biol. 116(1):71–76

    CAS  Article  Google Scholar 

  20. Kumai Y, Bernier NJ, Perry SF (2014) Angiotensin-II promotes Na+ uptake in larval zebrafish, Danio rerio, in acidic and ion-poor water. J Endocrinol 220:195–205

    CAS  Article  PubMed  Google Scholar 

  21. Kurmi M, Golla VM, Kumar S et al (2016) Stability behaviour of antiretroviral drugs and their combinations. 4: characterization of degradation products of tenofovir alafenamide fumarate and comparison of its degradation and stability behaviour with tenofovir disoproxil fumarate. J Pharm Biomed Anal 131:146–155

    Article  PubMed  Google Scholar 

  22. Levi L, Ziv T, Admon A et al (2012) Insight into molecular pathways of retinal metabolism, associated with vitellogenesis in zebrafish. AJP Endocrinol Metab 302:E626–E644

    CAS  Article  Google Scholar 

  23. Lopez-Novoa JM, Quiros Y, Vicente L et al (2011) New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 79:33–45

    CAS  Article  PubMed  Google Scholar 

  24. Luckenbach T, Fischer S, Sturm A (2014) Current advances on ABC drug transporters in fish. Comp Biochem Physiol Part C Toxicol Pharmacol 165:28–52

    CAS  Article  Google Scholar 

  25. Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struc Biol 120:343–352

    CAS  Article  Google Scholar 

  26. Mazer M, Perrone J (2008) Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. J Med Toxicol 4:2–6

    Article  PubMed  PubMed Central  Google Scholar 

  27. McGrath P, Li C-Q (2008) Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today 13:394–401

    CAS  Article  PubMed  Google Scholar 

  28. Mihaljevic I, Popovic M, Zaja R, Smital T (2016) Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio). BMC Genomics 17:626

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nevedomskaya E, Mayboroda OA, Deelder AM (2011) Cross-platform analysis of longitudinal data in metabolomics. Mol BioSyst 7:3214–3222

    CAS  Article  PubMed  Google Scholar 

  30. Olson H, Betton G, Robinson D et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67

    CAS  Article  PubMed  Google Scholar 

  31. Pacchiarotta T, Hensbergen PJ, Wuhrer M et al (2012) Fibrinogen alpha chain O-glycopeptides as possible markers of urinary tract infection. J Proteomics 75:1067–1073

    CAS  Article  PubMed  Google Scholar 

  32. Pannicke U, Hönig M, Hess I et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41:101–105

    CAS  Article  PubMed  Google Scholar 

  33. Peng H-C, Wang Y-H, Wen C-C et al (2010) Nephrotoxicity assessments of acetaminophen during zebrafish embryogenesis. Comp Biochem Physiol C Toxicol Pharmacol 151:480–486

    Article  PubMed  Google Scholar 

  34. Peterson RT, MacRae CA (2012) Systematic approaches to toxicology in the zebrafish. Annu Rev Pharmacol Toxicol 52:433–453

    CAS  Article  PubMed  Google Scholar 

  35. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395

    Article  PubMed  PubMed Central  Google Scholar 

  36. Price VR (2002) ATP depletion of tubular cells causes dissociation of the zonula adherens and nuclear translocation of—catenin and LEF-1. J Am Soc Nephrol 13:1152–1161

    CAS  Article  PubMed  Google Scholar 

  37. Rafelski SM (2013) Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol 11:71

    Article  PubMed  PubMed Central  Google Scholar 

  38. Randhawa MA (2009) Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad 21:184–185

    PubMed  Google Scholar 

  39. Rider SA, Tucker CS, Del-Pozo J et al (2012) Techniques for the in vivo assessment of cardio-renal function in zebrafish (Danio rerio) larvae. J Physiol 590:1803–1809

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Rider SA, Mullins LJ, Verdon RF et al (2015) Renin expression in developing zebrafish is associated with angiogenesis and requires the notch pathway and endothelium. Am J Physiol Ren Physiol 309:F531–F539

    CAS  Article  Google Scholar 

  41. Saad M, Cavanaugh K, Verbueken E et al (2016) Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3. J Toxicol Sci 41:1–11

    CAS  Article  PubMed  Google Scholar 

  42. Schieber NL, Nixon SJ, Webb RI et al (2010) Modern approaches for ultrastructural analysis of the zebrafish embryo. Methods Cell Biol 96:425–442

    Article  PubMed  Google Scholar 

  43. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    CAS  Article  PubMed  Google Scholar 

  44. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Smith KY, Patel P, Fine D et al (2009) Randomized, double-blind, placebo-matched, multicenter trial of abacavir/lamivudine or tenofovir/emtricitabine with lopinavir/ritonavir for initial HIV treatment. AIDS 23:1547–1556

    CAS  Article  PubMed  Google Scholar 

  46. Tourret J, Deray G, Isnard-Bagnis C (2013) Tenofovir effect on the kidneys of HIV-infected patients: a double-edged sword? J Am Soc Nephrol 24:1519–1527

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Westhoff JH, Giselbrecht S, Schmidts M et al (2013) Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney. PLoS ONE 8:1–13

    CAS  Google Scholar 

  48. Wingert RA, Davidson AJ (2008) The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 73(10):1120–1127

    CAS  Article  PubMed  Google Scholar 

  49. Wingert RA, Selleck R, Yu J et al (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938

    CAS  Article  PubMed  Google Scholar 

  50. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Maysa Franco and Ana Cristina Borges from the Fish Facility of the Gulbenkian Institute of Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Judit Morello.

Ethics declarations

Funding

This work was supported by the Calouste Gulbenkian Foundation, Gulbenkian Professorship 121986/2012; the Foundation for Science and Technology through the grant ANR/BEX-BID/0153/2012, contract IF/00951/2012 (to SSL), fellowship PD/BD/52420/2013 (to RJ) and travel ship SFRH/BSAB/114291/2016 (to JM); iNOVA4Health Research Unit, LISBOA-01-0145-FEDER-007344.

Ethical statement

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that they have no conlficts of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorgulho, R., Jacinto, R., Lopes, S.S. et al. Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations. Arch Toxicol 92, 411–423 (2018). https://doi.org/10.1007/s00204-017-2063-1

Download citation

Keywords

  • Nephrotoxicity
  • Proximal tubule
  • Mitochondria
  • Renal clearance
  • Zebrafish