Archives of Toxicology

, Volume 92, Issue 1, pp 411–423 | Cite as

Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations

  • Rita Gorgulho
  • Raquel Jacinto
  • Susana S. Lopes
  • Sofia A. Pereira
  • Erin M. Tranfield
  • Gabriel G. Martins
  • Emilio J. Gualda
  • Rico J. E. Derks
  • Ana C. Correia
  • Evelyne Steenvoorden
  • Petra Pintado
  • Oleg A. Mayboroda
  • Emilia C. Monteiro
  • Judit MorelloEmail author
Organ Toxicity and Mechanisms


Prediction and management of drug-induced renal injury (DIRI) rely on the knowledge of the mechanisms of drug insult and on the availability of appropriate animal models to explore it. Zebrafish (Danio rerio) offers unique advantages for assessing DIRI because the larval pronephric kidney has a high homology with its human counterpart and it is fully mature at 3.5 days post-fertilization. Herein, we aimed to evaluate the usefulness of zebrafish larvae as a model of renal tubular toxicity through a comprehensive analysis of the renal alterations induced by the lethal concentrations for 10% of the larvae for gentamicin, paracetamol and tenofovir. We evaluated drug metabolic profile by mass spectrometry, renal function with the inulin clearance assay, the 3D morphology of the proximal convoluted tubule by two-photon microscopy and the ultrastructure of proximal convoluted tubule mitochondria by transmission electron microscopy. Paracetamol was metabolized by conjugation and oxidation with further detoxification with glutathione. Renal clearance was reduced with gentamicin and paracetamol. Proximal tubules were enlarged with paracetamol and tenofovir. All drugs induced mitochondrial alterations including dysmorphic shapes (“donuts”, “pancakes” and “rods”), mitochondrial swelling, cristae disruption and/or loss of matrix granules. These results are in agreement with the tubular effects of gentamicin, paracetamol and tenofovir in man and demonstrate that zebrafish larvae might be a good model to assess functional and structural damage associated with DIRI.


Nephrotoxicity Proximal tubule Mitochondria Renal clearance Zebrafish 



We would like to thank Maysa Franco and Ana Cristina Borges from the Fish Facility of the Gulbenkian Institute of Science.

Compliance with ethical standards


This work was supported by the Calouste Gulbenkian Foundation, Gulbenkian Professorship 121986/2012; the Foundation for Science and Technology through the grant ANR/BEX-BID/0153/2012, contract IF/00951/2012 (to SSL), fellowship PD/BD/52420/2013 (to RJ) and travel ship SFRH/BSAB/114291/2016 (to JM); iNOVA4Health Research Unit, LISBOA-01-0145-FEDER-007344.

Ethical statement

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that they have no conlficts of interest.

Supplementary material

204_2017_2063_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)
204_2017_2063_MOESM2_ESM.avi (23.2 mb)
Supplementary material 2 (AVI 23,778 kb)
204_2017_2063_MOESM3_ESM.avi (23 mb)
Supplementary material 3 (AVI 23,593 kb)
204_2017_2063_MOESM4_ESM.avi (21.8 mb)
Supplementary material 4 (AVI 22,371 kb)
204_2017_2063_MOESM5_ESM.avi (20.6 mb)
Supplementary material 5 (AVI 21,118 kb)
204_2017_2063_MOESM6_ESM.avi (21.6 mb)
Supplementary material 6 (AVI 22,081 kb)
204_2017_2063_MOESM7_ESM.avi (24.3 mb)
Supplementary material 7 (AVI 24,875 kb)
204_2017_2063_MOESM8_ESM.avi (33.4 mb)
Supplementary material 8 (AVI 34,249 kb)
204_2017_2063_MOESM9_ESM.avi (24.2 mb)
Supplementary material 9 (AVI 24,770 kb)
204_2017_2063_MOESM10_ESM.avi (26.6 mb)
Supplementary material 10 (AVI 27,194 kb)
204_2017_2063_MOESM11_ESM.avi (25.5 mb)
Supplementary material 11 (AVI 26,116 kb)


  1. Arpagaus S, Rawyler A, Braendle R (2002) Occurrence and characteristics of the mitochondrial permeability transition in plants. J Biol Chem 277:1780–1787CrossRefPubMedGoogle Scholar
  2. Basile D, Anderson M, Sutton T (2012) Pathophysiology of acute kidney injury. Compr Physiol 2:1303–1353PubMedPubMedCentralGoogle Scholar
  3. Bonventre J, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121:4210–4221CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chevalier RL (2016) The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol 311:F145–F161CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cianciolo Cosentino C, Skrypnyk NI, Brilli LL et al (2013) Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 24:943–953CrossRefPubMedPubMedCentralGoogle Scholar
  6. Clarot I, Chaimbault P, Hasdenteufel F et al (2004) Determination of gentamicin sulfate and related compounds by high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 1031:281–287CrossRefPubMedGoogle Scholar
  7. Cook SF, King AD, van den Anker JN, Wilkins DG (2015) Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: method validation and application to a neonatal pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 1007:30–42CrossRefPubMedGoogle Scholar
  8. Drummond IA, Davidson AJ (2010) Zebrafish kidney development. In: Detrich HW, Westerfiled M, Zon LI (eds) Methods in cell biology. Elsevier Inc., Third Edit, pp 233–260Google Scholar
  9. Galloway CA, Yoon Y (2012) Perspectives on: SGP symposium on mitochondrial physiology and medicine: what comes first, misshape or dysfunction? The view from metabolic excess. J Gen Physiol 139:455–463CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gemer O, Zaltztein E, Gorodischer R (1983) Absorption of orally administered gentamicin in infants with diarrhea. Pediatr Pharmacol (New York) 3:119–123Google Scholar
  11. Goldstone JV, McArthur AG, Kubota A et al (2010) Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genomics 11:643CrossRefPubMedPubMedCentralGoogle Scholar
  12. Graham GG, Scott KF (2005) Mechanism of action of paracetamol. Am J Ther 12:46–55CrossRefPubMedGoogle Scholar
  13. Hentschel DM, Park KM, Cilenti L et al (2005) Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Ren Physiol 288:F923–F929CrossRefGoogle Scholar
  14. Herlitz LC, Mohan S, Stokes MB et al (2010) Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int 78:1171–1177CrossRefPubMedGoogle Scholar
  15. Hill A, Mesens N, Steemans M et al (2012) Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development. Drug Metab Rev 44:127–140CrossRefPubMedGoogle Scholar
  16. Huang SM, Xu F, Lam SH et al (2013) Metabolomics of developing zebrafish embryos using gas chromatography- and liquid chromatography-mass spectrometry. Mol BioSyst 9:1372–1380CrossRefPubMedGoogle Scholar
  17. Kersten S, Arjona FJ (2017) Ion transport in the zebrafish kidney from a human disease angle: possibilities, considerations, and future perspectives. Am J Physiol Renal Physiol 312:F172–F189CrossRefPubMedGoogle Scholar
  18. Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA (2005) Organization of the pronephric filtration apparatus in zebrafish requires nephrin, podocin and the FERM domain protein Mosaic eyes. Dev Biol 285:316–329CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struc Biol. 116(1):71–76CrossRefGoogle Scholar
  20. Kumai Y, Bernier NJ, Perry SF (2014) Angiotensin-II promotes Na+ uptake in larval zebrafish, Danio rerio, in acidic and ion-poor water. J Endocrinol 220:195–205CrossRefPubMedGoogle Scholar
  21. Kurmi M, Golla VM, Kumar S et al (2016) Stability behaviour of antiretroviral drugs and their combinations. 4: characterization of degradation products of tenofovir alafenamide fumarate and comparison of its degradation and stability behaviour with tenofovir disoproxil fumarate. J Pharm Biomed Anal 131:146–155CrossRefPubMedGoogle Scholar
  22. Levi L, Ziv T, Admon A et al (2012) Insight into molecular pathways of retinal metabolism, associated with vitellogenesis in zebrafish. AJP Endocrinol Metab 302:E626–E644CrossRefGoogle Scholar
  23. Lopez-Novoa JM, Quiros Y, Vicente L et al (2011) New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 79:33–45CrossRefPubMedGoogle Scholar
  24. Luckenbach T, Fischer S, Sturm A (2014) Current advances on ABC drug transporters in fish. Comp Biochem Physiol Part C Toxicol Pharmacol 165:28–52CrossRefGoogle Scholar
  25. Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struc Biol 120:343–352CrossRefGoogle Scholar
  26. Mazer M, Perrone J (2008) Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. J Med Toxicol 4:2–6CrossRefPubMedPubMedCentralGoogle Scholar
  27. McGrath P, Li C-Q (2008) Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today 13:394–401CrossRefPubMedGoogle Scholar
  28. Mihaljevic I, Popovic M, Zaja R, Smital T (2016) Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio). BMC Genomics 17:626CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nevedomskaya E, Mayboroda OA, Deelder AM (2011) Cross-platform analysis of longitudinal data in metabolomics. Mol BioSyst 7:3214–3222CrossRefPubMedGoogle Scholar
  30. Olson H, Betton G, Robinson D et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67CrossRefPubMedGoogle Scholar
  31. Pacchiarotta T, Hensbergen PJ, Wuhrer M et al (2012) Fibrinogen alpha chain O-glycopeptides as possible markers of urinary tract infection. J Proteomics 75:1067–1073CrossRefPubMedGoogle Scholar
  32. Pannicke U, Hönig M, Hess I et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41:101–105CrossRefPubMedGoogle Scholar
  33. Peng H-C, Wang Y-H, Wen C-C et al (2010) Nephrotoxicity assessments of acetaminophen during zebrafish embryogenesis. Comp Biochem Physiol C Toxicol Pharmacol 151:480–486CrossRefPubMedGoogle Scholar
  34. Peterson RT, MacRae CA (2012) Systematic approaches to toxicology in the zebrafish. Annu Rev Pharmacol Toxicol 52:433–453CrossRefPubMedGoogle Scholar
  35. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395CrossRefPubMedPubMedCentralGoogle Scholar
  36. Price VR (2002) ATP depletion of tubular cells causes dissociation of the zonula adherens and nuclear translocation of—catenin and LEF-1. J Am Soc Nephrol 13:1152–1161CrossRefPubMedGoogle Scholar
  37. Rafelski SM (2013) Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol 11:71CrossRefPubMedPubMedCentralGoogle Scholar
  38. Randhawa MA (2009) Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad 21:184–185PubMedGoogle Scholar
  39. Rider SA, Tucker CS, Del-Pozo J et al (2012) Techniques for the in vivo assessment of cardio-renal function in zebrafish (Danio rerio) larvae. J Physiol 590:1803–1809CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rider SA, Mullins LJ, Verdon RF et al (2015) Renin expression in developing zebrafish is associated with angiogenesis and requires the notch pathway and endothelium. Am J Physiol Ren Physiol 309:F531–F539CrossRefGoogle Scholar
  41. Saad M, Cavanaugh K, Verbueken E et al (2016) Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3. J Toxicol Sci 41:1–11CrossRefPubMedGoogle Scholar
  42. Schieber NL, Nixon SJ, Webb RI et al (2010) Modern approaches for ultrastructural analysis of the zebrafish embryo. Methods Cell Biol 96:425–442CrossRefPubMedGoogle Scholar
  43. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefPubMedGoogle Scholar
  44. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529CrossRefPubMedPubMedCentralGoogle Scholar
  45. Smith KY, Patel P, Fine D et al (2009) Randomized, double-blind, placebo-matched, multicenter trial of abacavir/lamivudine or tenofovir/emtricitabine with lopinavir/ritonavir for initial HIV treatment. AIDS 23:1547–1556CrossRefPubMedGoogle Scholar
  46. Tourret J, Deray G, Isnard-Bagnis C (2013) Tenofovir effect on the kidneys of HIV-infected patients: a double-edged sword? J Am Soc Nephrol 24:1519–1527CrossRefPubMedPubMedCentralGoogle Scholar
  47. Westhoff JH, Giselbrecht S, Schmidts M et al (2013) Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney. PLoS ONE 8:1–13Google Scholar
  48. Wingert RA, Davidson AJ (2008) The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 73(10):1120–1127CrossRefPubMedGoogle Scholar
  49. Wingert RA, Selleck R, Yu J et al (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938CrossRefPubMedGoogle Scholar
  50. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rita Gorgulho
    • 1
  • Raquel Jacinto
    • 1
  • Susana S. Lopes
    • 1
  • Sofia A. Pereira
    • 1
  • Erin M. Tranfield
    • 2
  • Gabriel G. Martins
    • 2
    • 3
  • Emilio J. Gualda
    • 2
  • Rico J. E. Derks
    • 4
  • Ana C. Correia
    • 2
  • Evelyne Steenvoorden
    • 4
  • Petra Pintado
    • 1
  • Oleg A. Mayboroda
    • 4
  • Emilia C. Monteiro
    • 1
  • Judit Morello
    • 1
    Email author
  1. 1.Chronic Diseases Research Center, NOVA Medical SchoolNOVA University of LisbonLisbonPortugal
  2. 2.Unit of Imaging and CytometryGulbenkian Institute of ScienceLisbonPortugal
  3. 3.Centre for Ecology, Evolution and Environmental Changes, Faculty of SciencesUniversity of LisbonLisbonPortugal
  4. 4.Center for Proteomics and MetabolomicsLeiden University Medical CentreLeidenThe Netherlands

Personalised recommendations