Adverse outcome pathways: opportunities, limitations and open questions

Abstract

Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ames BN, Whitfield HJ Jr (1966) Frameshift mutagenesis in Salmonella. Cold Spring Harb Symp Quant Biol 31:221–225

    CAS  PubMed  Article  Google Scholar 

  2. Andersen ME, Krewski D (2009) Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci 107:324–330

    CAS  PubMed  Article  Google Scholar 

  3. Andersen ME, Krewski D (2010) The vision of toxicity testing in the 21st century: moving from discussion to action. Toxicol Sci 117:17–24

    CAS  PubMed  Article  Google Scholar 

  4. Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    CAS  PubMed  Article  Google Scholar 

  5. Ball N, Cronin MTD, Shen J et al (2016) Toward good read-across practice (GRAP) guidance. ALTEX 33:149–166

    PubMed  PubMed Central  Google Scholar 

  6. Balmer NV, Leist M (2014) Epigenetics and transcriptomics to detect adverse drug effects in model systems of human development. Basic Clin Pharmacol Toxicol 115:59–68

    CAS  PubMed  Article  Google Scholar 

  7. Balmer NV, Weng M, Zimmer B et al (2012) Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 21:4104–4114

    CAS  PubMed  Article  Google Scholar 

  8. Balmer NV, Klima S, Rempel E et al (2014) From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol 88:1451–1468

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Bal-Price A, Crofton K, Leist M et al (2015a) International STakeholder NETwork for developmental neurotoxicity (ISTNET): creating a developmental neurotoxicity (DNT) testing roadmap for regulatory purposes. Arch Toxicol 89:269–287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Bal-Price A, Crofton KM, Sachana M et al (2015b) Putative adverse outcome pathways relevant to neurotoxicity. Crit Rev Toxicol 45:83–91

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Bal-Price A, Lein PJ, Keil KP et al (2017) Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. Neurotoxicology 59:240–255

    CAS  PubMed  Article  Google Scholar 

  12. Basketter DA, Clewell H, Kimber I et al (2012) A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing—t4 report. ALTEX 29:3–91

    PubMed  Article  Google Scholar 

  13. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Investig 15:209–218

    Article  Google Scholar 

  14. Baumann J, Gassmann K, Masjosthusmann S et al (2016) Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol 90:1415–1427

    CAS  PubMed  Article  Google Scholar 

  15. Becker RA, Ankley GT, Edwards SW et al (2015) Increasing scientific confidence in adverse outcome pathways: application of tailored Bradford-Hill considerations for evaluating weight of evidence. Regul Toxicol Pharmacol 72:514–537

    PubMed  Article  Google Scholar 

  16. Beliaeff B, Burgeot T (2002) Integrated biomarkers response: a useful tool for ecological risk assessment. Environ Toxicol Chem 21:1316–1322

    CAS  PubMed  Article  Google Scholar 

  17. Bhattacharya S (1948) A test for mutagenicity of methylcholanthrene. Nature 162:573

    CAS  PubMed  Article  Google Scholar 

  18. Blaauboer BJ, Boekelheide K, Clewell HJ et al (2012) The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans. Altex 29:411–425

    PubMed  Article  Google Scholar 

  19. Bois FY, Jamei M, Clewell HJ (2010) PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 278:256–267

    CAS  PubMed  Article  Google Scholar 

  20. Bolt HM, Foth H, Hengstler JG, Degen GH (2004) Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective. Toxicol Lett 151(1):29–41

    CAS  PubMed  Article  Google Scholar 

  21. Bouhifd M, Andersen ME, Baghdikian C et al (2015) The human toxome project. ALTEX 32:112–124

    PubMed  PubMed Central  Article  Google Scholar 

  22. Casey WM (2016) Advances in the development and validation of test methods in the United States. Toxicol Res 32:9–14

    PubMed  PubMed Central  Article  Google Scholar 

  23. Carbonell P, Lopez O, Amberg A, Pastor M, Sanz F (2017) Hepatotoxicity prediction by systems biology modeling of disturbed metabolic pathways using gene expression data. ALTEX 34(2):219-234

    PubMed  Google Scholar 

  24. Clippinger AJ, Hill E, Curren R et al (2016) Bridging the gap between regulatory acceptance and industry use of non-animal methods. ALTEX 33:453–458

    PubMed  Google Scholar 

  25. Crawford SE, Hartung T, Hollert H et al (2017) Green toxicology: a strategy for sustainable chemical and material development. Environ Sci Eur 29:16

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Daneshian M, Kamp H, Hengstler J et al (2016) Highlight report: launch of a large integrated European in vitro toxicology project: EU-ToxRisk. Arch Toxicol 90:1021–1024

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Daston G, Knight DJ, Schwarz M et al (2015) SEURAT: safety evaluation ultimately replacing animal testing—recommendations for future research in the field of predictive toxicology. Arch Toxicol 89:15–23

    CAS  PubMed  Article  Google Scholar 

  28. Delrue N, Sachana M, Sakuratani Y et al (2016) The adverse outcome pathway concept: a basis for developing regulatory decision-making tools. Altern Lab Anim 44:417–429

    PubMed  Google Scholar 

  29. Depledge MH (1994) The rational basis for the use of biomarkers as ecotoxicological tools. In: Fossi MC, Leonzio C (ed.) Nondestructive biomarkers in vertebrates, pp. 271-295

  30. Drasdo D, Hoehme S, Hengstler JG (2014) How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis. J Hepatol 61:951–956

    PubMed  Article  Google Scholar 

  31. Duffield JS, Forbes SJ, Constandinou CM et al (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115:56–65

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Edwards SW, Tan YM, Villeneuve DL et al (2016) Adverse outcome pathways-organizing toxicological information to improve decision making. J Pharmacol Exp Ther 356(1):170–181

    CAS  PubMed  Article  Google Scholar 

  33. Fasbender F, Widera A, Hengstler JG et al (2016) Natural killer cells and liver fibrosis. Front Immunol 7:19

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Fehrenbacher N, Gyrd-Hansen M, Poulsen B et al (2004) Sensitization to the lysosomal cell death pathway upon immortalization and transformation. Cancer Res 64:5301–5310

    CAS  PubMed  Article  Google Scholar 

  35. Fischer FC et al (2017) Modeling exposure in the Tox21 in vitro bioassays. Chem Res Toxicol 30(5):1197–1208

    CAS  PubMed  Article  Google Scholar 

  36. Foghsgaard L, Wissing D, Mauch D et al (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1010

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Gantner F, Leist M, Küsters S et al (1996) T cell stimulus-induced crosstalk between lymphocytes and liver macrophages results in augmented cytokine release. Exp Cell Res 229:137–146

    CAS  PubMed  Article  Google Scholar 

  38. Gassmann K, Abel J, Bothe H et al (2010) Species-specific differential AhR expression protects human neural progenitor cells against developmental neurotoxicity of PAHs. Environ Health Perspect 118:1571–1577

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Gerhardt E, Kügler S, Leist M et al (2001) Cascade of caspase activation in potassium-deprived cerebellar granule neurons: targets for treatment with peptide and protein inhibitors of apoptosis. Mol Cell Neurosci 17:717–731 (PubMed PMID: 11312607)

    CAS  PubMed  Article  Google Scholar 

  40. Ghallab A, Cellière G, Henkel SG et al (2016) Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol 64:860–871

    CAS  PubMed  Article  Google Scholar 

  41. Godoy P, Hewitt NJ, Albrecht U et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87:1315–1530

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Grinberg M, Stöber RM, Edlund K et al (2014) Toxicogenomics directory of chemically exposed human hepatocytes. Arch Toxicol 88(12):2261–2287

    CAS  PubMed  Article  Google Scholar 

  43. Guidance document on developing and assessing adverse outcome pathways (2017) Environment directorate joint meeting of the chemicals committee and the working party on chemicals, pesticides and biotechnology; Series on Testing and Assessment No. 184. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2013)6&doclanguage=en. Accessed 4 Sept 2017

  44. Hamon J, Jennings P, Bois FY (2014) Systems biology modeling of omics data: effect of cyclosporine a on the Nrf2 pathway in human renal cells. BMC Syst Biol 8:76

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. Hansson O, Castilho RF, Kaminski Schierle GS et al (2000) Additive effects of caspase inhibitor and lazaroid on the survival of transplanted rat and human embryonic dopamine neurons. Exp Neurol 164:102–111

    CAS  PubMed  Article  Google Scholar 

  46. Hansson O, Nylandsted J, Castilho RF et al (2003) Overexpression of heat shock protein 70 in R6/2 Huntington’s disease mice has only modest effects on disease progression. Brain Res 970:47–57

    CAS  PubMed  Article  Google Scholar 

  47. Hartung T (2009) Food for thought… on evidence-based toxicology. ALTEX 26:75–82

    PubMed  Article  Google Scholar 

  48. Hartung T (2013) Look back in anger—what clinical studies tell us about preclinical work. ALTEX 30:275–291

    PubMed  PubMed Central  Article  Google Scholar 

  49. Hartung T (2016) Making big sense from big data in toxicology by read-across. ALTEX 33:83–93

    PubMed  Article  Google Scholar 

  50. Hartung T (2017) Utility of the adverse outcome pathway concept in drug development. Expert Opin Drug Metab Toxicol 13:1–3

    PubMed  Article  Google Scholar 

  51. Hartung T, McBride M (2011) Food for thought… on mapping the human toxome. ALTEX 28:83–93

    PubMed  Article  Google Scholar 

  52. Hartung T, van Vliet E, Jaworska J et al (2012) Systems toxicology. ALTEX 29:119–128

    PubMed  Article  Google Scholar 

  53. Hartung T, Luechtefeld T, Maertens A et al (2013a) Integrated testing strategies for safety assessments. ALTEX 30:3–18

    PubMed  PubMed Central  Article  Google Scholar 

  54. Hartung T, Stephens M, Hoffmann S (2013b) Mechanistic validation. ALTEX 30:119–130

    PubMed  PubMed Central  Article  Google Scholar 

  55. Hartung T, FitzGerald R, Paul J et al (2017) Systems toxicology—real world applications and opportunities. Chem Res Toxicol 30:870–882

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Hengstler JG, Arand M, Herrero ME et al (1998) Polymorphisms of N-acetyltransferases, glutathione S-transferases, microsomal epoxide hydrolase and sulfotransferases: influence on cancer susceptibility. Recent Results Cancer Res 154:47–85

    CAS  PubMed  Article  Google Scholar 

  57. Hengstler JG, Van der Burg B, Steinberg P et al (1999) Interspecies differences in cancer susceptibility and toxicity. Drug Metab Rev 31:917–970

    CAS  PubMed  Article  Google Scholar 

  58. Hengstler JG, Bogdanffy MS, Bolt HM et al (2003) Challenging dogma: thresholds for genotoxic carcinogens? The case of vinyl acetate. Annu Rev Pharmacol Toxicol 43:485–520

    CAS  PubMed  Article  Google Scholar 

  59. Hengstler JG, Marchan R, Leist M (2012) Highlight report: towards the replacement of in vivo repeated dose systemic toxicity testing. Arch Toxicol 86:13–15

    CAS  PubMed  Article  Google Scholar 

  60. Hirt U, Gantner F, Leist M (2000) Phagocytosis of non-apoptotic cells dying by caspase-independent mechanisms. J Immunol 164:6520–6529

    CAS  PubMed  Article  Google Scholar 

  61. Hoehme S, Hengstler JG, Brulport M et al (2007) Mathematical modelling of liver regeneration after intoxication with CCl(4). Chem Biol Interact 168:74–93

    CAS  Article  Google Scholar 

  62. Hoehme S, Brulport M, Bauer A et al (2010) Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci USA 107:10371–10376

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Hoffmann S, Hartung T (2006) Towards an evidence-based toxicology. Hum Exp Toxicol 25:497–513

    CAS  PubMed  Article  Google Scholar 

  64. Hoffmann S, de Vries RBM, Stephens ML et al (2017) A primer on systematic reviews in toxicology. Arch Toxicol 91(7):2551–2575

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Horvat T, Landesmann B, Lostia A et al (2017) Adverse outcome pathway development from protein alkylation to liver fibrosis. Arch Toxicol 91:1523–1543

    CAS  PubMed  Article  Google Scholar 

  66. Huggett RJ, Kimerle RA, Mehrle PM, Bergman HL (1992) Biomarkers. Biochemical, physiological, and histological markers of anthropogenic stress. Lewis Publishers, Boca Raton, p 347

    Google Scholar 

  67. Jacobs MN, Colacci A, Louekari K et al (2016) International regulatory needs for development of an IATA for non-genotoxic carcinogenic chemical substances. ALTEX 33:359–392

    PubMed  Google Scholar 

  68. Jalan R, Moreau R, Kamath PS, Arroyo V (2016) Acute-on-chronic liver failure: a distinct clinical condition. Semin Liver Dis 36(2):107–108

    PubMed  Article  Google Scholar 

  69. Jansen PL, Ghallab A, Vartak N et al (2017) The ascending pathophysiology of cholestatic liver disease. Hepatology 65(2):722–738

    CAS  PubMed  Article  Google Scholar 

  70. Jennings P (2013) Stress response pathways, toxicity pathways and adverse outcome pathways. Arch Toxicol 87:13–14

    CAS  PubMed  Article  Google Scholar 

  71. Jennings P, Limonciel A, Felice L et al (2013) An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 87:49–72

    CAS  PubMed  Article  Google Scholar 

  72. Kim KH, Chen CC, Monzon RI et al (2013) Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 33:2078–2090

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Kisseleva T, Cong M, Paik Y et al (2012) Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA 109:9448–9453

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Kleensang A, Maertens A, Rosenberg M et al (2014) Pathways of toxicity. ALTEX 31:53–61

    PubMed  Article  Google Scholar 

  75. Kleinstreuer NC, Ceger PC, Allen DG et al (2016) A curated database of rodent uterotrophic bioactivity. Environ Health Perspect 124:556–562

    PubMed  Google Scholar 

  76. Kleinstreuer NC, Ceger P, Watt ED et al (2017) Development and validation of a computational model for androgen receptor activity. Chem Res Toxicol 30:946–964

    CAS  PubMed  Article  Google Scholar 

  77. Knapen D, Vergauwen L, Villeneuve DL et al (2015) The potential of AOP networks for reproductive and developmental toxicity assay development. Reprod Toxicol 56:52–55

    CAS  PubMed  Article  Google Scholar 

  78. Krizhanovsky V, Yon M, Dickins RA et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Krug AK, Balmer NV, Matt F et al (2013a) Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch Toxicol 87:2215–2231

    CAS  PubMed  Article  Google Scholar 

  80. Krug AK, Kolde R, Gaspar JA et al (2013b) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 87:123–143

    CAS  PubMed  Article  Google Scholar 

  81. Krug AK, Gutbier S, Zhao L et al (2014) Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis. 5:e1222

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Kuegler PB, Zimmer B, Waldmann T et al (2010) Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicitiy testing—a review by the Transatlantic Think Tank for toxicology (t4). ALTEX 27:17–42

    PubMed  Google Scholar 

  83. Latta M, Künstle G, Leist M et al (2000) Metabolic depletion of ATP by fructose inversely controls CD95- and tumor necrosis factor receptor 1-mediated hepatic apoptosis. J Exp Med 191:1975–1985

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Leist M, Hartung T (2013) Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch Toxicol 87:563–567

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Leist M, Jäättelä M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    CAS  PubMed  Article  Google Scholar 

  86. Leist M, Nicotera P (1997) Calcium and neuronal death. Rev Physiol Biochem Pharmacol 132:79–125

    Article  Google Scholar 

  87. Leist M, Gantner F, Künstle G et al (1996) The 55-kD tumor necrosis factor receptor and CD95 independently signal murine hepatocyte apoptosis and subsequent liver failure. Mol Med 2:109–124

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Leist M, Fava E, Montecucco C, Nicotera P (1997a) Peroxynitrite and nitric oxide donors induce neuronal apoptosis by eliciting autocrine excitotoxicity. Eur J Neurosci 9:1488–1498

    CAS  PubMed  Article  Google Scholar 

  89. Leist M, Gantner F, Naumann H et al (1997b) Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology 112:923–934

    CAS  PubMed  Article  Google Scholar 

  90. Leist M, Volbracht C, Kühnle S et al (1997c) Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide. Mol Med 3:750–764

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Leist M, Gantner F, Künstle G et al (1998a) Cytokine-mediated hepatic apoptosis. Rev Physiol Biochem Pharmacol 133:109–155

    CAS  PubMed  Google Scholar 

  92. Leist M, Volbracht C, Fava E et al (1998b) 1-Methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation, and neuronal apoptosis. Mol Pharmacol 54:789–801

    CAS  PubMed  Google Scholar 

  93. Leist M, Hartung T, Nicotera P (2008) The dawning of a new age of toxicology. ALTEX 25:103–114

    PubMed  Article  Google Scholar 

  94. Leist M, Efremova L, Karreman C (2010) Food for thought on considerations and guidelines for basic test method descriptions in toxicology. ALTEX 27:309–317

    PubMed  Article  Google Scholar 

  95. Leist M, Hasiwa N, Daneshian M et al (2012) Validation and quality control of replacement alternatives—current status and future challenges. Toxicol Res 1:8–22

    CAS  Article  Google Scholar 

  96. Leist M, Hasiwa N, Rovida C et al (2014) Consensus report on the future of animal-free systemic toxicity testing. ALTEX 31:341–356

    PubMed  Google Scholar 

  97. Lewin L (1885) Lehrbuch der Toxikologie: für Aerzte, Studierende und Apotheker (translation: textbook of Toxicology for physicians, students and pharmacists). Urban & Schwarzenberg, Wien

    Google Scholar 

  98. Lewin L (1924) Phantastica. Die betäubenden und erregenden Genussmittel. Für Ärzte und Nichtärzte (translation: Phantastica. Anaesthetic and stimulating drugs for physicians and laymen). Verlag von Georg Stilke, Berlin

  99. Limonciel A, Aschauer L, Wilmes A et al (2011) Lactate is an ideal non-invasive marker for evaluating temporal alterations in cell stress and toxicity in repeat dose testing regimes. Toxicol In Vitro 25:1855–1862

    CAS  PubMed  Article  Google Scholar 

  100. Maertens A, Anastas N, Spencer PJ et al (2014) Green Toxicology. ALTEX 31:243–249

    PubMed  Article  Google Scholar 

  101. Matozzo V, Gagné F, Marin MG, Ricciardi F, Blaise C (2008) Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: a review. Environ Int 34:531–545

    CAS  PubMed  Article  Google Scholar 

  102. McCarty JF, Shugart LR (1990) Biomarkers of environmental contamination. Lewis Publishers, CRC Press, Boca Raton, p 457

    Google Scholar 

  103. Nicotera P, Leist M, Manzo L (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol Sci 20(2):46–51

    CAS  PubMed  Article  Google Scholar 

  104. NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington

    Google Scholar 

  105. NTP (2017) https://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/immunotoxicity/nonanimal/index.html. Accessed 4 Sept 2017

  106. Nyffeler J, Karreman C, Leisner H et al (2017) Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants. ALTEX 34:7555–7594

    Google Scholar 

  107. Nylandsted J, Wick W, Hirt UA et al (2002) Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res 62:7139–7142

    CAS  PubMed  Google Scholar 

  108. Obiol-Pardo C, Gomis-Tena J, Sanz F, Saiz J, Pastor M (2011) A multiscale simulation system for the prediction of drug-induced cardiotoxicity. J Chem Inf Model 51:483–492

    CAS  PubMed  Article  Google Scholar 

  109. Ockleford C et al (2017) EFSA panel on plant protection products and their residues (PPR) investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson’s disease and childhood leukaemia. EFSA J 15:4691

    Google Scholar 

  110. Oesch F, Herrero ME, Hengstler JG, Lohmann M, Arand M (2000) Metabolic detoxification: implications for thresholds. Toxicol Pathol 28(3):382–387

    CAS  PubMed  Article  Google Scholar 

  111. Oesch F, Herrero ME, Lohmann M, Hengstler JG, Arand M (2001) Sequestration of biological reactive intermediates by trapping as covalent enzyme-intermediate complex. Adv Exp Med Biol 500:577–586

    CAS  PubMed  Article  Google Scholar 

  112. Oki NO, Edwards SW (2016) An integrative data mining approach to identifying adverse outcome pathway signatures. Toxicology 28(350–352):49–61

    Article  CAS  Google Scholar 

  113. Paparella M, Colacci A, Jacobs MN (2017) Uncertainties of testing methods: what do we (want to) know about carcinogenicity? ALTEX 34(2):235–252

    PubMed  Google Scholar 

  114. Patlewicz G, Ball N, Becker RA et al (2014) Read-across approaches—misconceptions, promises and challenges ahead. ALTEX 31:387–396

    PubMed  Article  Google Scholar 

  115. Pelkonen O, Terron A, Hernandez AF et al (2017) Chemical exposure and infant leukaemia: development of an adverse outcome pathway (AOP) for aetiology and risk assessment research. Arch Toxicol 91(8):2763–2780

    CAS  PubMed  Article  Google Scholar 

  116. Polasek TM, Patel F, Jensen BP, Sorich MJ, Wiese MD, Doogue MP (2013) Predicted metabolic drug clearance with increasing adult age. Br J Clin Pharmacol 75(4):1019–1028

    CAS  PubMed  Article  Google Scholar 

  117. Poulin P, Theil FP (2002) Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci 91:129–156

    CAS  PubMed  Article  Google Scholar 

  118. Radaeva S, Sun R, Jaruga B et al (2006) Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130:435–452

    CAS  PubMed  Article  Google Scholar 

  119. Rahnenführer J, Leist M (2015) From smoking guns to footprints: mining for critical events of toxicity pathways in transcriptome data. Arch Toxicol 89:813–817

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. Ramachandran P, Iredale JP (2012) Macrophages: central regulators of hepatic fibrogenesis and fibrosis resolution. J Hepatol 56:1417–1419

    PubMed  Article  Google Scholar 

  121. Ramachandran P, Pellicoro A, Vernon MA et al (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci USA 109:E3186–E3195

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. Rempel E, Hoelting L, Waldmann T et al (2015) A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol 89:1599–1618

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Rostami-Hodjegan A (2012) Physiologically based pharmacokinetics joined with in vitro–in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther 92(1):50–61

    CAS  PubMed  Article  Google Scholar 

  124. Rovida C, Alépée N, Api AM et al (2015) Integrated testing strategies (ITS) for safety assessment. ALTEX 32:171–181

    PubMed  Article  Google Scholar 

  125. Samuel GO, Hoffmann S, Wright R et al (2016) Guidance on assessing the methodological and reporting quality of toxicologically relevant studies: a scoping review. Environ Int 92–93:630–646

    PubMed  Article  CAS  Google Scholar 

  126. Sauer JM, Hartung T, Leist M et al (2015) Systems toxicology: the future of risk assessment. Int J Toxicol 34:346–348

    PubMed  PubMed Central  Article  Google Scholar 

  127. Schierle GS, Hansson O, Leist M et al (1999) Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nat Med 5:97–100

    CAS  PubMed  Article  Google Scholar 

  128. Schildknecht S, Pöltl D, Nagel DM et al (2009) Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells. Toxicol Appl Pharmacol 241:23–35

    CAS  PubMed  Article  Google Scholar 

  129. Schildknecht S, Pape R, Müller N et al (2011) Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J Biol Chem 286:4991–5002

    CAS  PubMed  Article  Google Scholar 

  130. Schildknecht S, Karreman C, Pöltl D et al (2013) Generation of genetically-modified human differentiated cells for toxicological tests and the study of neurodegenerative diseases. ALTEX 30:427–444

    PubMed  Article  Google Scholar 

  131. Schildknecht S, Pape R, Meiser J et al (2015) Preferential extracellular generation of the active parkinsonian toxicant MPP+ by transporter-independent export of the intermediate MPDP+. Antioxid Redox Signal 23:1001–1016

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Schildknecht S, Di Monte DA, Pape R et al (2017) Tipping points and endogenous determinants of nigrostriatal degeneration by MPTP. Trends Pharmacol Sci 38:541–555

    CAS  PubMed  Article  Google Scholar 

  133. Schliess F, Hoehme S, Henkel SG et al (2014) Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. Hepatology 60:2040–2051

    CAS  PubMed  Article  Google Scholar 

  134. Shinde V, Hoelting L, Perumal SS et al (2016) Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development—introduction of the STOP-Toxukn and STOP-Toxukk t. Arch Toxicol 91:839–864

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. Smirnova L, Hogberg HT, Leist M et al (2014) Developmental neurotoxicity—challenges in the 21st century and in vitro opportunities. ALTEX 31:129–156

    PubMed  PubMed Central  Google Scholar 

  136. Stephens ML, Betts K, Beck NB et al (2016) The emergence of systematic review in toxicology. Toxicol Sci 152:10–16

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  137. Stiegler N, Krug A, Matt F et al (2011) Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol Sci 121:73–87

    CAS  PubMed  Article  Google Scholar 

  138. Tacke F, Zimmermann HW (2014) Macrophage heterogeneity in liver injury and fibrosis. J Hepatol 60:1090–1096

    CAS  PubMed  Article  Google Scholar 

  139. Tian Z, Chen Y, Gao B (2013) Natural killer cells in liver disease. Hepatology 57:1654–1662. doi:10.1002/hep.26115

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. Tollefsen KE, Scholz S, Cronin MT et al (2014) Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Reg Toxicol Pharmacol 70:629–640

    Article  Google Scholar 

  141. Trevan JW (1927) The error of determination of toxicity. Proc R Soc Lond B Biol Sci 101(712):483–514

  142. Tsaioun K, Blaauboer BJ, Hartung T (2016) Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. ALTEX 33:343–358

    PubMed  Article  Google Scholar 

  143. Users’ handbook supplement to the guidance document for developing and assessing AOPs (2017) http://www.oecd-ilibrary.org/environment/users-handbook-supplement-to-the-guidance-document-for-developing-and-assessing-adverse-outcome-pathways_5jlv1m9d1g32-en. Accessed 4 Sept 2017

  144. van der Burg B, Pieterse B, Buist H et al (2015a) A high throughput screening system for predicting chemically-induced reproductive organ deformities. Reprod Toxicol 55:95–103

    PubMed  Article  CAS  Google Scholar 

  145. van der Burg B, Wedebye EB, Dietrich DR et al (2015b) The ChemScreen project to design a pragmatic alternative approach to predict reproductive toxicity of chemicals. Reprod Toxicol 55:114–123

    PubMed  Article  CAS  Google Scholar 

  146. van Thriel C, Westerink R, Beste C et al (2011) Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. NeuroToxicol 33:911–924

    Article  CAS  Google Scholar 

  147. Vartak N, Damle-Vartak A, Richter B et al (2016) Cholestasis-induced adaptive remodeling of interlobular bile ducts. Hepatology 63:951–964

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M (2014a) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142:312–320

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M (2014b) Adverse outcome pathway development. II: best practices. Toxicol Sci 142:321–330

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. Vinken M (2015) Adverse outcome pathways and drug-induced liver injury testing. Chem Res Toxicol 28:1391–1397

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. Volbracht C, Leist M, Nicotera P (1999) ATP controls neuronal apoptosis triggered by microtubule breakdown or potassium deprivation. Mol Med. 5:477–489

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Volbracht C, Fava E, Leist M et al (2001a) Calpain inhibitors prevent nitric oxide-triggered excitotoxic apoptosis. NeuroReport 12:3645–3648

    CAS  PubMed  Article  Google Scholar 

  153. Volbracht C, Leist M, Kolb SA et al (2001b) Apoptosis in caspase-inhibited neurons. Mol Med 7:36–48

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wilmes A, Limonciel A, Aschauer L et al (2013) Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J Proteomics 79:180–194

    CAS  PubMed  Article  Google Scholar 

  155. Wilmes A, Bielow C, Ranninger C et al (2015) Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics. Toxicol In Vitro 30:117–127

    CAS  PubMed  Article  Google Scholar 

  156. Wittwehr C, Aladjov H, Ankley G et al (2017) How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology. Toxicol Sci 155:326–336

    PubMed  Article  Google Scholar 

  157. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. Zhu H, Bouhifd M, Kleinstreuer N et al (2016) Supporting read-across using biological data. ALTEX 33:167–182

    PubMed  PubMed Central  Google Scholar 

  159. Zimmer B, Lee G, Balmer NV et al (2012) Evaluation of developmental toxicants and signaling pathways in a functional test based on the migration of human neural crest cells. Environ Health Perspect 120:1116–1122

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. Zimmer B, Pallocca G, Dreser N et al (2014) Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery. Arch Toxicol 88:1109–1126

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU-ToxRisk project (An Integrated European “Flagship” Program Driving Mechanism-Based Toxicity Testing and Risk Assessment for the 21st Century) funded by the European Commission under the Horizon 2020 programme (Grant Agreement No. 681002). This review is a joint activity of members of the EU-ToxRisk project and additionally incorporates ideas and suggestions of several colleagues who are not members of this consortium. We thank in particular Brigitte Landesmann, Maurice Whelan, Anna Bal-Price, and Christian Desaintes for their valuable discussion. Some work on examples was funded by the German Federal Ministry of Education and Research (BMBF) (LiSyM, SysDT, NeuriTox, LivSys, Lebersimulator projects). We thank M. Turajski and B. Schanze for valuable bibliographic support, and B. Barton for excellent support in handling the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Marcel Leist or Jan G. Hengstler.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leist, M., Ghallab, A., Graepel, R. et al. Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 91, 3477–3505 (2017). https://doi.org/10.1007/s00204-017-2045-3

Download citation

Keywords

  • Regulatory toxicology
  • Systems biology
  • Multi-scale integration
  • Computational toxicology
  • Interspecies extrapolation
  • Metabolism
  • Pathway unidirectionality
  • Liver fibrosis
  • Paracetamol
  • CCl4
  • Vinyl acetate
  • Tumor promotion
  • Binning of events
  • Multiple hit events
  • Proof of non-toxicity
  • Prioritization of compounds