Skip to main content

Advertisement

Log in

Prenatal nicotine exposure induces HPA axis-hypersensitivity in offspring rats via the intrauterine programming of up-regulation of hippocampal GAD67

  • Reproductive Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

An Erratum to this article was published on 03 August 2017

This article has been updated

Abstract

The intrauterine programming of hypothalamic–pituitary–adrenal (HPA) axis hypersensitivity is associated with chronic adult diseases. Our previous studies demonstrated the HPA-axis hypersensitivity in offspring rats induced by prenatal nicotine exposure. The goal of the present study is to further investigate the intrauterine programming mechanism. Pregnant Wistar rats were subcutaneously administered with 2.0 mg/kg day of nicotine from gestational day (GD) 9–20. A group of the pregnant rats was euthanized at GD20, and the fetal rats were extracted. The remaining rats were left to come to term, and the adult offspring were exposed to chronic stress. For adult offspring rats, prenatal nicotine exposure induced HPA-axis hypersensitivity after chronic stress, accompanied by imbalanced glutamatergic/GABAergic afferent inputs. Moreover, prenatal nicotine exposure enhanced the expression of hippocampal glutamic acid decarboxylase 67 (GAD67), accompanied by a decreased methylation ratio within nt −1019 to −689 of the GAD67 promoter, decreased expression of Dnmt1, and an increased GABA content and density of GABAergic neurons. The fetal rats exhibited changes consistent with the adult rats. Similar effects were also observed by treating the fetal hippocampal cell line H19-7 with 1−100 μM nicotine, while dihydro-β-erythroidine hydrobromide (DHβE), the specific inhibitor of α4β2nAChR, can reverse the effects caused by nicotine. These results indicate that prenatal nicotine exposure can enhance the potential excitability of the hypothalamus via the intrauterine programming of up-regulation of hippocampal GAD67. All of these results contribute to the HPA-axis hypersensitivity in adult offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 03 August 2017

    An erratum to this article has been published.

References

  • Aguilera G, Rabadan-Diehl C, Nikodemova M (2001) Regulation of pituitary corticotropin releasing hormone receptors. Peptides 22:769–774

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ (2000) In utero programming of cardiovascular disease. Theriogenology 53:555–574

    Article  CAS  PubMed  Google Scholar 

  • Bond RW, Wyborski RJ, Gottlieb DI (1990) Developmentally regulated expression of an exon containing a stop codon in the gene for glutamic acid decarboxylase. Proc Natl Acad Sci USA 87:8771–8775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamniansawat S, Chongthammakun S (2012) A priming role of local estrogen on exogenous estrogen-mediated synaptic plasticity and neuroprotection. Exp Mol Med 44(6):403–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. Brain Res Rev 65(1):56–79

    Article  PubMed  Google Scholar 

  • Charles MA, Delpierre C, Breant B (2016) Developmental origin of health and adult diseases (DOHaD): evolution of a concept over three decades. Med Sci (Paris) 32:15–20

    Article  Google Scholar 

  • Choi HJ, Chang BJ, Han JS (2012) Phospholipase D1 is an important regulator of bFGF-induced neurotrophin-3 expression and neurite outgrowth in H19-7 cells. Mol Neurobiol 45(3):507–519

    Article  CAS  PubMed  Google Scholar 

  • Contal M, Masson G, Boyer C, Cazevielle C, Mares P (2005) Neonatal consequences of maternal smoking during pregnancy. J Gynecol Obstet Biol Reprod (Paris) 34(Spec No.1):3S–215S

    Google Scholar 

  • Davis EP, Waffarn F, Sandman CA (2011) Prenatal treatment with glucocorticoids sensitizes the hpa axis response to stress among full-term infants. Dev Psychobiol 53:175–183

    Article  CAS  PubMed  Google Scholar 

  • Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49:4–8

    Article  CAS  PubMed  Google Scholar 

  • Dong E, Agis-Balboa RC, Simonini MV, Grayson DR, Costa E, Guidotti A (2005) Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia. Proc Natl Acad Sci USA 102(35):12578–12583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelbregt MJ, van Weissenbruch MM, Popp-Snijders C, Lips P, Delemarre-van de Waal HA (2001) Body mass index, body composition, and leptin at onset of puberty in male and female rats after intrauterine growth retardation and after early postnatal food restriction. Pediatr Res 50:474–478

    Article  CAS  PubMed  Google Scholar 

  • Erni K, Shaqiri-Emini L, La Marca R, Zimmermann R, Ehlert U (2012) Psychobiological effects of prenatal glucocorticoid exposure in 10-year-old children. Front Psychiatry 3:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Flak JN, Ostrander MM, Tasker JG, Herman JP (2009) Chronic stress-induced neurotransmitter plasticity in the PVN. J Comp Neurol 517:156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gierke P, Zhao C, Bernstein HG, Noack C, Anand R, Heinemann U, Braunewell KH (2008) Implication of neuronal Ca2+-sensor protein VILIP-1 in the glutamate hypothesis of schizophrenia. Neurobiol Dis 32(1):162–175

    Article  CAS  PubMed  Google Scholar 

  • Hadidi KA, Mohammed FI (2004) Nicotine content in tobacco used in hubble-bubble smoking. Saudi Med J 25:912–917

    PubMed  Google Scholar 

  • Hamilton KL, Harris AC, Gewirtz JC, Sparber SB, Schrott LM (2005) HPA axis dysregulation following prenatal opiate exposure and postnatal withdrawal. Neurotox Teratol 27:95–103

    Article  CAS  Google Scholar 

  • Hauger RL, Aguilera G (1993) Regulation of pituitary corticotropin releasing hormone (CRH) receptors by CRH: interaction with vasopressin. Endocrinology 133:1708–1714

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Tasker JG, Ziegler DR, Cullinan WE (2002) Local circuit regulation of paraventricular nucleus stress integration: glutamate-GABA connections. Pharmacol Biochem Behav 71:457–468

    Article  CAS  PubMed  Google Scholar 

  • Higgins S (2002) Smoking in pregnancy. Curr Opin Obstet Gynecol 14:145–151

    Article  PubMed  Google Scholar 

  • Holloway AC, Cuu DQ, Morrison KM, Gerstein HC, Tarnopolsky MA (2007) Transgenerational effects of fetal and neonatal exposure to nicotine. Endocrine 31(3):254–259

    Article  CAS  PubMed  Google Scholar 

  • Jankord R, Herman JP (2008) Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann NY Acad Sci 1148:64–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    Article  CAS  PubMed  Google Scholar 

  • Kanaka-Gantenbein C (2010) Fetal origins of adult diabetes. Ann N Y Acad Sci 1205:99–105

    Article  PubMed  Google Scholar 

  • Kang SS, Cole M, Lee S, Rivier C (2004) Development of individual alcohol inhalation chambers for mice: validation in a model of prenatal alcohol. Alcohol Clin Exp Res 28:1549–1556

    Article  PubMed  Google Scholar 

  • Kim KC, Lee DK, Go HS, Kim P, Choi CS, Kim JW, Jeon SJ, Song MR, Shin CY (2014) Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol Neurobiol 49(1):512–528

    Article  CAS  PubMed  Google Scholar 

  • Kioukia-Fougia N, Antoniou K, Bekris S, Liapi C, Christofidis I, Papadopoulou-Daifoti Z (2002) The effects of stress exposure on the hypothalamic–pituitary–adrenal axis, thymus, thyroid hormones and glucose levels. Prog Neuropsychopharmacol Biol Psychiatry 26:823–830

    Article  CAS  PubMed  Google Scholar 

  • Kundakovic M, Chen Y, Costa E, Grayson DR (2007) DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol Pharmacol 71(3):644–653

    Article  CAS  PubMed  Google Scholar 

  • Lai YJ, Yu D, Zhang JH, Chen GJ (2016) Cooperation of genomic and rapid nongenomic actions of estrogens in synaptic plasticity. Mol Neurobiol. doi:10.1007/s12035-016-9979-y (Epub ahead of print)

    PubMed Central  Google Scholar 

  • Levin ED, Rezvani AH (2006) Nicotinic-antipsychotic drug interactions and cognitive function. EXS 98:185–205

    CAS  PubMed  Google Scholar 

  • Liang H, Xiong W, Zhang Z (2007) Effect of maternal food restriction during gestation on early development of F1 and F2 offspring in the rat-like hamster (Cricetulus triton). Zoology 110:118–126

    Article  PubMed  Google Scholar 

  • Lichtensteiger W, Ribary U, Schlumpf M, Odermatt B, Widmer HR (1988) Prenatal adverse effects of nicotine on the developing brain. Prog Brain Res 73:137–157

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu F, Kou H, Zhang BJ, Xu D, Chen B, Chen LB, Magdalou J, Wang H (2012) Prenatal nicotine exposure induced a hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in intrauterine growth retardation offspring rats. Toxicol Lett 214(3):307–313

    Article  CAS  PubMed  Google Scholar 

  • Lumley J, Oliver SS, Chamberlain C, Oakley L (2004) Interventions for promoting smoking cessation during pregnancy. Cochrane Database Syst Rev 18(4):1055

    Google Scholar 

  • Maloku E, Kadriu B, Zhubi A, Dong E, Pibiri F, Satta R, Guidotti A (2011) Selective α4β2 nicotinic acetylcholine receptor agonists target epigenetic mechanisms in cortical GABAergic neurons. Neuropsychopharmacology 36(7):1366–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Torteya C, Bogat GA, Levendosky AA, von Eye A (2016) The influence of prenatal intimate partner violence exposure on hypothalamic-pituitary-adrenal axis reactivity and childhood internalizing and externalizing symptoms. Dev Psychopathol 28(1):55–72

    Article  PubMed  Google Scholar 

  • Matthews SG, Owen D, Kalabis G, Banjanin S, Setiawan EB, Dunn EA, Andrews MH (2004) Fetal glucocorticoid exposure and hypothalamo-pituitary-adrenal (HPA) function after birth. Endocr Res 30:827–836

    Article  CAS  PubMed  Google Scholar 

  • Moechars D, Weston MC, Leo S, Callaerts-Vegh Z, Goris I, Daneels G, Buist A, Cik M, van der Spek P, Kass S, Meert T, D’Hooge R, Rosenmund C, Hampson RM (2006) Vesicular glutamate transporter VGLUT2 expression levels control quantal size and neuropathic pain. J Neurosci 26(46):12055–12066

    Article  CAS  PubMed  Google Scholar 

  • Murrin LC, Ferrer JR, Zeng WY, Haley NJ (1987) Nicotine administration to rats: methodological considerations. Life Sci 40:1699–1708

    Article  CAS  PubMed  Google Scholar 

  • Ottem EN, Godwin JG, Krishnan S, Petersen SL (2004) Dual-phenotype GABA/glutamate neurons in adult preoptic area: sexual dimorphism and function. J Neurosci 24(37):8097–8105

    Article  CAS  PubMed  Google Scholar 

  • Pastrakuljic A, Schwartz R, Simone C, Derewlany LO, Knie B, Koren G (1998) Transplacental transfer and biotransformation studies of nicotine in the human placental cotyledon perfused in vitro. Life Sci 63(26):2333–2342

    Article  CAS  PubMed  Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  • Rosmond R, Bjorntorp P (2000) The hypothalamic–pituitary–adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J Intern Med 247:188–197

    Article  CAS  PubMed  Google Scholar 

  • Sallout B, Walker M (2003) The fetal origin of adult diseases. J Obstet Gynaecol 23:555–560

    Article  CAS  PubMed  Google Scholar 

  • Satta R, Maloku E, Zhubi A, Pibiri F, Hajos M, Costa E, Guidotti A (2008) Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc Natl Acad Sci USA 105(42):16356–16361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahidi S, Komaki A, Mahmoodi M, Lashgari R (2008) The role of GABAergic transmission in the dentate gyrus on acquisition, consolidation and retrieval of an inhibitory avoidance learning and memory task in the rat. Brain Res 1204:87–93

    Article  CAS  PubMed  Google Scholar 

  • Skogen JC, Overland S (2012) The fetal origins of adult disease: a narrative review of the epidemiological literature. JRSM Short Rep 3(8):59

    Article  PubMed  PubMed Central  Google Scholar 

  • Tasker JG, Herman JP (2011) Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic–pituitary–adrenal axis. Stress 14(4):398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuthill DP, Stewart JH, Coles EC, Andrews J, Cartlidge PH (1999) Maternal cigarette smoking and pregnancy outcome. Paediatr Perinat Epidemiol 13(3):245–253

    Article  CAS  PubMed  Google Scholar 

  • Wamsteeker JI, Bains JS (2010) A synaptocentric view of the neuroendocrine response to stress. Eur J Neurosci 32:2011–2021

    Article  PubMed  Google Scholar 

  • Wang T, Chen M, Yan YE, Xiao FQ, Pan XL, Wang H (2009) Growth retardation of fetal rats exposed to nicotine in utero: possible involvement of CYP1A1, CYP2E1, and P-glycoprotein. Environ Toxicol 24(1):33–42

    Article  PubMed  Google Scholar 

  • Welberg LA, Seckl JR, Holmes MC (2001) Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104:71–79

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek L, Fish EW, O'Leary-Moore SK, Parnell SE, Sulik KK (2015) Hypothalamic-pituitary-adrenal axis and behavioral dysfunction following early binge-like prenatal alcohol exposure in mice. Alcohol 49(3):207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Jin Y, Buddhala C, Osterhaus G, Cohen E, Jin H, Wei J, Davis K, Obata K, Wu JY (2007) Role of glutamate decarboxylase (GAD) isoform, GAD65, in GABA synthesis and transport into synaptic vesicles-Evidence from GAD65-knockout mice studies. Brain Res 1154:80–83

    Article  CAS  PubMed  Google Scholar 

  • Xita N, Tsatsoulis A (2010) Fetal origins of the metabolic syndrome. Ann N Y Acad Sci 1205:148–155

    Article  PubMed  Google Scholar 

  • Xu D, Liang G, Yan YE, He WW, Liu YS, Chen LB, Magdalou J, Wang H (2012) Nicotine-induced over-exposure to maternal glucocorticoid and activated glucocorticoid metabolism causes hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic alterations in fetal rats. Toxicol Lett 209(3):282–290

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Xia LP, Shen L, Lei YY, Liu L, Zhang L, Magdalou J, Wang H (2013) Prenatal nicotine exposure enhances the susceptibility to metabolic syndrome in adult offspring rats fed high-fat diet via alteration of HPA axis-associated neuroendocrine metabolic programming. Acta Pharmacol Sin 34(12):1526–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Bai J, Zhang L, Shen L, Wang LL, Liu ZF, Xia LP, Wang H (2015) Prenatal nicotine exposure-induced intrauterine programming alteration increases the susceptibility of high-fat diet-induced non-alcoholic simple fatty liver in female adult offspring rats. Toxicol Res 4(1):112–120

    Article  Google Scholar 

  • Yildiz D (2004) Nicotine, its metabolism and an overview of its biological effects. Toxicon 43:619–632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81371483, 81220108026, 81430089, 81202240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Xu.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s00204-017-2039-1.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Lu, J., Dong, W. et al. Prenatal nicotine exposure induces HPA axis-hypersensitivity in offspring rats via the intrauterine programming of up-regulation of hippocampal GAD67. Arch Toxicol 91, 3927–3943 (2017). https://doi.org/10.1007/s00204-017-1996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-1996-8

Keywords

Navigation