Abstract
Infant leukaemia (<1 year old) is a rare disease of an in utero origin at an early phase of foetal development. Rearrangements of the mixed-lineage leukaemia (MLL) gene producing abnormal fusion proteins are the most frequent genetic/molecular findings in infant B cell-acute lymphoblastic leukaemia. In small epidemiological studies, mother/foetus exposures to some chemicals including pesticides have been associated with infant leukaemia; however, the strength of evidence and power of these studies are weak at best. Experimental in vitro or in vivo models do not sufficiently recapitulate the human disease and regulatory toxicology studies are unlikely to capture this kind of hazard. Here, we develop an adverse outcome pathway (AOP) based substantially on an analogous disease—secondary acute leukaemia caused by the topoisomerase II (topo II) poison etoposide—and on cellular and animal models. The hallmark of the AOP is the formation of MLL gene rearrangements via topo II poisoning, leading to fusion genes and ultimately acute leukaemia by global (epi)genetic dysregulation. The AOP condenses molecular, pathological, regulatory and clinical knowledge in a pragmatic, transparent and weight of evidence-based framework. This facilitates the interpretation and integration of epidemiological studies in the process of risk assessment by defining the biologically plausible causative mechanism(s). The AOP identified important gaps in the knowledge relevant to aetiology and risk assessment, including the specific embryonic target cell during the short and spatially restricted period of susceptibility, and the role of (epi)genetic features modifying the initiation and progression of the disease. Furthermore, the suggested AOP informs on a potential Integrated Approach to Testing and Assessment to address the risk caused by environmental chemicals in the future.
This is a preview of subscription content,
to check access.


Notes
Even if MLL is not present in 100% of infant leukaemias, the ‘MLL-rearranged (MLL-r) infant leukaemia’, especially MLL-r B-ALL, is taken here as a model for the disease principally because of the quantity of scientific evidence.
Abbreviations
- ALL:
-
Acute lymphoblastic leukaemia
- HSPC:
-
Hematopoietic stem and progenitor cell
- IATA:
-
Integrated Approach to Testing and Assessment
- MLL:
-
Mixed-lineage or myeloid/lymphoid leukaemia (gene)
- MLL-r:
-
Rearrangements of MLL gene
- t-AL:
-
Therapy-associated acute leukaemia
- topo II:
-
DNA topoisomerase II
References
Alexander FE, Patheal SL, Biondi A, Brandalise S, Cabrera ME, Chan LC, Chen Z, Cimino G, Cordoba JC, Gu LJ, Hussein H, Ishii E, Kamel AM, Labra S, Magalhaes IQ, Mizutani S, Petridou E, de Oliveira MP, Yuen P, Wiemels JL, Greaves MF (2001) Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res 61(6):2542–2546
Andersson AK, Ma J, Wang J, St. Jude Children’s Research Hospital and Washington University Pediatric Cancer Genome Project et al (2015) The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet 47(4):330–337. doi:10.1038/ng.3230
Azarova AM, Lin RK, Tsai YC, Liu LF, Lin CP, Lyu YL (2010) Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia. Biochem Biophys Res Commun 399(1):66–71. doi:10.1016/j.bbrc.2010.07.043
Ballabio E, Milne TA (2012) Molecular and epigenetic mechanisms of MLL in human leukemogenesis. Cancers (Basel). 4(3):904–944. doi:10.3390/cancers4030904
Ballabio E, Milne TA (2014) Epigenetic control of gene expression in leukemogenesis: cooperation between wild type MLL and MLL fusion proteins. Mol Cell Oncol. 1(2):e955330. doi:10.1080/23723548.2014.955330
Bandele OJ, Osheroff N (2007) Bioflavonoids as poisons of human topoisomerase II alpha and II beta. Biochemistry 46(20):6097–6108
Bandele OJ, Clawson SJ, Osheroff N (2008) Dietary polyphenols as topoisomerase II poisons: B ring and C ring substituents determine the mechanism of enzyme-mediated DNA cleavage enhancement. Chem Res Toxicol 21:1253–1260
Bardini M, Woll PS, Corral L, Luc S, Wittmann L, Ma Z, Lo Nigro L, Basso G, Biondi A, Cazzaniga G, Jacobsen SE (2015) Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia 29(1):38–50. doi:10.1038/leu.2014.154
Benito JM, Godfrey L, Kojima K, Hogdal L, Wunderlich M, Geng H, Marzo I, Harutyunyan KG, Golfman L, North P, Kerry J, Ballabio E, Chonghaile TN, Gonzalo O, Qiu Y, Jeremias I, Debose L, O’Brien E, Ma H, Zhou P, Jacamo R, Park E, Coombes KR, Zhang N, Thomas DA, O’Brien S, Kantarjian HM, Leverson JD, Kornblau SM, Andreeff M, Müschen M, Zweidler-McKay PA, Mulloy JC, Letai A, Milne TA, Konopleva M (2015) MLL-rearranged acute lymphoblastic leukemias activate BCL-2 through H3K79 methylation and are sensitive to the BCL-2-specific antagonist ABT-199. Cell Rep. 13(12):2715–2727. doi:10.1016/j.celrep.2015.12.003
Blanco JG, Edick MJ, Relling MV (2004) Etoposide induces chimeric Mll gene fusions. FASEB J 18(1):173–175. doi:10.1096/fj.03-0638fje
Borkhardt A, Wilda M, Fuchs U, Gortner L, Reiss I (2003) Congenital leukaemia after heavy abuse of permethrin during pregnancy. Arch Dis Child Fetal Neonatal Ed 88(5):F436–F437
Breese EH, Buechele C, Dawson C, Cleary ML, Porteus MH (2015) Use of genome engineering to create patient specific MLL translocations in primary human hematopoietic stem and progenitor cells. PLoS ONE 10(9):e0136644. doi:10.1371/journal.pone.0136644
Buechele C, Breese EH, Schneidawind D, Lin CH, Jeong J, Duque-Afonso J, Wong SH, Smith KS, Negrin RS, Porteus M, Cleary ML (2015) MLL leukemia induction by genome editing of human CD34 + hematopoietic cells. Blood 126(14):1683–1694. doi:10.1182/blood-2015-05-646398
Bueno C, Catalina P, Melen GJ, Montes R, Sanchez L, Ligero G, Garcia-Perez JL, Menendez P (2009) Etoposide induces MLL rearrangements and other chromosomal abnormalities in human embryonic stem cells. Carcinogenesis 30(9):1628–1637. doi:10.1093/carcin/bgp169
Bursen A, Schwabe K, Ruster B et al (2010) The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. Blood 115(17):3570–3579
Castano J, Herrero AB, Bursen A, Gonzalez F, Marschalek R, Gutierrez NC, Menendez P (2016) Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair. Oncotarget. doi:10.18632/oncotarget.8938
Chen C-W, Armstrong SA (2015) Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond. Exp Hematol 43:673–684
Chen W, Li Q, Hudson WA, Kumar A, Kirchhof N, Kersey JH (2006) A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 108(2):669–677. doi:10.1182/blood-2005-08-3498
Choi J, Polcher A, Joas A (2016) Systematic literature review on Parkinson’s disease and Childhood Leukaemia and mode of actions for pesticides. EFSA supporting publication: EN-955, 256 pp
Cowell IG, Austin CA (2012) Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. Int J Environ Res Public Health 9(12):2075–2091
de la Chica RA, Mediano C, Salido M, Espinet B, Manresa JM, Solé F (2011) Increased MLL gene rearrangements in amniocytes from fetuses of mothers who smoke. Leuk Res 35(8):1066–1069. doi:10.1016/j.leukres.2011.04.010
Dobbins SE, Sherborne AL, Ma YP, Bardini M, Biondi A, Cazzaniga G, Lloyd A, Chubb D, Greaves MF, Houlston RS (2013) The silent mutational landscape of infant MLL-AF4 pro-B acute lymphoblastic leukemia. Genes Chromosomes Cancer 52(10):954–960. doi:10.1002/gcc.22090 Epub 2013 Jul 26
Driessen EM, van Roon EH, Spijkers-Hagelstein JA, Schneider P, de Lorenzo P, Valsecchi MG, Pieters R, Stam RW (2013) Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants. Haematologica 98(6):937–944. doi:10.3324/haematol.2012.067983
Edwards SW, Tan YM, Villeneuve DL, Meek ME, McQueen CA (2016) Adverse outcome pathways-organizing toxicological information to improve decision making. J Pharmacol Exp Ther 356(1):170–181
Emerenciano M, Barbosa TC, de Almeida Lopes B, Meyer C, Marschalek R, Pombo-de-Oliveira MS (2015) Subclonality and prenatal origin of RAS mutations in KMT2A (MLL)-rearranged infant acute lymphoblastic leukaemia. Br J Haematol 170(2):268–271. doi:10.1111/bjh.13279
Ernest P, Wang J, Korsmeyer SJ (2002) The role of MLL in hematopoiesis and leukemia. Curr Opin Hematol 9:282–287
Ernest P, Fisher JK, Avery W, Sade S, Foy D, Korsmeyer SJ (2004) Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev Cell 6:437–443
Ezoe S (2012) Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int J Environ Res Public Health. 9(7):2444–2453. doi:10.3390/ijerph9072444
Farooq Z, Banday S, Pandita TK, Altaf M (2016) The many faces of histone H3K79 methylation. Mutat Res, Rev Mutat Res 768:46–52
Felix CA, Kolaris CP, Osheroff N (2006) Topoisomerase II and the etiology of chromosomal translocations. DNA Repair (Amst). 5(9–10):1093–1108
Ferreira JD, Couto AC, Pombo-de-Oliveira MS, Koifman S, Brazilian Collaborative Study Group of Infant Acute Leukemia (2013) In utero pesticide exposure and leukemia in Brazilian children < 2 years of age. Environ Health Perspect 121(2):269–275. doi:10.1289/ehp.1103942
Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC et al (1993) In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 363(6427):358–360. doi:10.1038/363358a0
Fortune JM, Osheroff N (1998) Merbarone inhibits the catalytic activity of human topoisomerase IIalpha by blocking DNA cleavage. J Biol Chem 273(28):17643–17650
Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB et al (1997) Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 94(25):13950–13954
Godfrey L, Kerry J, Thorne R, Repapi E, Davies JO, Tapia M, Ballabio E, Hughes JR, Geng H, Konopleva M, Milne TA (2017) MLL-AF4 binds directly to a BCL-2 specific enhancer and modulates H3K27 acetylation. Exp Hematol 47:64–75. doi:10.1016/j.exphem.2016.11.003
Gole B, Wiesmüller L (2015) Leukemogenic rearrangements at the mixed lineage leukemia gene (MLL)-multiple rather than a single mechanism. Front Cell Dev Biol. 25(3):41. doi:10.3389/fcell.2015.00041
Gordon ON, Luis PB, Ashley RE, Osheroff N, Schneider C (2015) Oxidative transformation of demethoxy- and bisdemethoxycurcumin: products, mechanism of formation, and poisoning of human topoisomerase IIβ. Chem Res Toxicol 28(5):989–996. doi:10.1021/acs.chemrestox.5b00009
Greaves M (2002) Childhood leukaemia. BMJ 324:283–287
Greaves M (2015) When one mutation is all it takes. Cancer Cell 27(4):433–434
Hernández AF, Menéndez P (2016) Linking pesticide exposure with pediatric leukemia: potential underlying mechanisms. Int J Mol Sci 17:461
Hess JL, Yu BD, Li B, Hanson RD, Korsmeyer SJ (1997) Defect in yolk sac hematopoiesis in mll-null embryos. Blood 90:1799–1806
Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 73:1541–1552
Ishii E, Eguchi M, Eguchi-Ishimae M, Yoshida N, Oda M, Zaitsu M et al (2002) In vitro cleavage of the MLL gene by topoisomerase II inhibitor (etoposide) in normal cord and peripheral blood mononuclear cells. Int J Hematol 76(1):74–79
Jansen MW, Corral L, van der Velden VH, Panzer-Grumayer R, Schrappe M, Schrauder A et al (2007) Immunobiological diversity in infant acute lymphoblastic leukemiais related to the occurence and type of MLL rearrangment. Leukemia 21(4):633–641
Joannides M, Grimwade D (2010) Molecular biology of therapy-related leukaemias. Clin Transl Oncol 12(1):8–14. doi:10.1007/s12094-010-0460-5
Joannides M, Mays AN, Mistry AR, Hasan SK, Reiter A, Wiemels JL, Felix CA, Coco FL, Osheroff N, Solomon E, Grimwade D (2011) Molecular pathogenesis of secondary acute promyelocytic leukemia. Mediterr J Hematol Infect Dis 3(1):e2011045. doi:10.4084/MJHID.2011.045
Kerry J, Godfrey L, Repapi E, Tapia M, Blackledge NP, Ma H, Ballabio E, O’Byrne S, Ponthan F, Heidenreich O, Roy A, Roberts I, Konopleva M, Klose RJ, Geng H, Milne TA (2017) MLL-AF4 spreading identifies binding sites that are distinct from super-enhancers and that govern sensitivity to DOT1L inhibition in leukemia. Cell Rep. 18(2):482–495. doi:10.1016/j.celrep.2016.12.054
Ketron AC, Osheroff N (2014) Phytochemicals as anticancer and chemopreventive topoisomerase II poisons. Phytochem Rev 13(1):19–35
Ketron AC, Gordon ON, Schneider C, Osheroff N (2013) Oxidative metabolites of curcumin poison human type II topoisomerases. Biochemistry 52:221–227
Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833
Krivtsov AV, Feng Z, Lemieux ME et al (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14(5):355–368
Lanoue L, Green KK, Kwik-Uribe C, Keen CL (2010) Dietary factors and the risk for acute infant leukemia: evaluating the effects of cocoa-derived flavanols on DNA topoisomerase activity. Exp Biol Med (Maywood). 235(1):77–89. doi:10.1258/ebm.2009.009184
Leone G, Pagano L, Ben-Yehuda D, Voso MT (2007) Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica 92(10):1389–1398
Li Z, Sun B, Clewell RA, Adeleye Y, Andersen ME, Zhang Q (2014) Dose–response modeling of etoposide-induced DNA damage response. Toxicol Sci 137(2):371–384. doi:10.1093/toxsci/kft259
Libura J, Slater DJ, Felix CA, Richardson C (2005) Therapy-related acute myeloid leukemia-like MLL rearrangements are induced by etoposide in primary human CD34 + cells and remain stable after clonal expansion. Blood 105(5):2124–2131. doi:10.1182/blood-2004-07-2683
Libura J, Ward M, Solecka J, Richardson C (2008) Etoposide-initiated MLL rearrangements detected at high frequency in human primitive hematopoietic stem cells with in vitro and in vivo long-term repopulating potential. Eur J Haematol 81(3):185–195. doi:10.1111/j.1600-0609.2008.01103.x
Lin RK, Zhou N, Lyu YL, Tsai YC, Lu CH, Kerrigan J, Chen YT, Guan Z, Hsieh TS, Liu LF (2011) Dietary isothiocyanate-induced apoptosis via thiol modification of DNA topoisomerase IIα. J Biol Chem 286:33591–33600
Lin S, Luo RT, Ptasinska A, Kerry J, Assi SA, Wunderlich M, Imamura T, Kaberlein JJ, Rayes A, Althoff MJ, Anastasi J, O’Brien MM, Meetei AR, Milne TA, Bonifer C, Mulloy JC, Thirman MJ (2016) Instructive role of MLL-fusion proteins revealed by a model of t(4;11) Pro-B acute lymphoblastic leukemia. Cancer Cell 30(5):737–749. doi:10.1016/j.ccell.2016.10.008
Lopez-Lazaro M, Willmore E, Austin CA (2010) The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells. Mutat Res 696(1):41–47. doi:10.1016/j.mrgentox.2009.12.010
Lu C, Liu X, Liu C, Wang J, Li C, Liu Q, Li Y, Li S, Sun S, Yan J, Shao J (2015) Chlorpyrifos induces MLL tra nslocations through caspase 3-dependent genomic instability and topoisomerase II inhibition in human fetal liver hematopoietic stem cells. Toxicol Sci 147(2):588–606. doi:10.1093/toxsci/kfv153
Manara E, Baron E, Tregnago C, Aveic S, Bisio V, Bresolin S, Masetti R, Locatelli F, Basso G, Pigazzi M (2014) MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia. Blood 124(2):263–272. doi:10.1182/blood-2013-09-525741
Marschalek R (2010) Mechanisms of leukemogenesis by MLL fusion proteins. Brit J Haematol 2010(152):141–154. doi:10.1111/j.1365-2141.08459.x
McClendon AK, Osheroff N (2007) DNA topoisomerase II, genotoxicity and cancer. Mutation Res 623(1–2):83–97
McKerrell T, Moreno T, Ponstingl H, Bolli N, Dias JM, Tischler G, Colonna V, Manasse B, Bench A, Bloxham D, Herman B, Fletcher D, Park N, Quail MA, Manes N, Hodkinson C, Baxter J, Sierra J, Foukaneli T, Warren AJ, Chi J, Costeas P, Rad R, Huntly B, Grove C, Ning Z, Tyler-Smith C, Varela I, Scott M, Nomdedeu J, Mustonen V, Vassiliou GS (2016) Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood 128(1):e1–e9. doi:10.1182/blood-2015-11-683334
Menendez P, Catalina P, Rodriguez R, Melen GJ, Bueno C, Arriero M, Garcia-Sanchez F, Lassaletta A, Garcia-Sanz R, Garcia-Castro J (2009) Bone marrow mesenchymal stem cells from infants with MLL-AF4 + acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med 206(13):3131–3141. doi:10.1084/jem.20091050
Metzler M, Forster A, Pannell R et al (2006) A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene 25(22):3093–3103
Meyer C, Hofmann J, Burmeister T et al (2013) The MLL recombinome of acute leukemias in 2013. Leukemia 27(11):2165–2176
Mistry AR, Felix CA, Whitmarsh RJ, Mason A, Reiter A, Cassinat B, Parry A, Walz C, Wiemels JL, Segal MR, Ades L, Blair IA, Osheroff N, Peniket AJ, Lafage-Pochitaloff M, Cross NC, Chomienne C, Solomon E, Fenaux P, Grimwade D (2005) DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 352(15):1529–1538
Moneypenny CG, Shao J, Song Y, Gallagher EP (2006) MLL rearrangements are induced by low doses of etoposide in human fetal hematopoietic stem cells. Carcinogenesis 27(4):874–881. doi:10.1093/carcin/bgi322 (Epub 2005/12/27)
Montecucco A, Zanetta F, Biamonti G (2015) Molecular mechanisms of etoposide. EXCLI J. 19(14):95–108. doi:10.17179/excli2015-561
Munoz-Lopez A, Romero-Moya D, Prieto C, Ramos-Meji-a V, Agraz-Doblas A, Varela I, Buschbeck M, Palau A, Carvajal-Vergara X, Giorgetti A, Ford A, Lako M, Granada I, Rodri-guez-Perales S, Ruiz-Xiville, Torres-Rui-z R, Stam RW, Fuster JL, Fraga MF, Nakanishi M, Cazzaniga G, Bardini M, Cobo I, Bayon GF, Fernandez AF, Bueno C, Menendez P (2016) Development refractoriness of MLL-rearranged human B cell acute leukemias to reprogramming into pluripotency. Stem Cell Rep 7(4):602–618. doi:10.1016/j.stemcr.2016.08.013
Nanya M, Sato M, Tanimoto K, Tozuka M, Mizutani S, Takagi M (2015) Dysregulation of the DNA damage response and KMT2A rearrangement in fetal liver hematopoietic cells. PLoS ONE 10(12):e0144540. doi:10.1371/journal.pone.0144540
Niemeyer CM (2014) RAS diseases in children. Haematologica 99(11):1653–1662
Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350
Ntzani EE, Chondrogiorgi M, Ntritsos G, Evangelou E and Tzoulaki I (2013) Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA supporting publication 2013: EN-497, 159 pp
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith R, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Angeli K, Fritsche E, Hernandez-Jerez AF, Leist M, Mantovani A, Menendez P, Pelkonen O, Price A, Viviani B, Chiusolo A, Ruffo F, Terron A, Bennekou SH, EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues) (2017) Scientific opinion on the investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson’s disease and childhood leukaemia. EFSA J 15(3):4691. doi:10.2903/j.efsa.2017.4691
OECD (2013) Guidance document on developing and assessing adverse outcome pathways. ENV/JM/MONO(2013) 6
Patlewitz G, Simon TW, Rowlands JC, Budinsky RA, Becker RA (2015) Proposing a scientific framework to help support the application of adverse outcome pathways for regulatory purposes. Regul Toxicol Pharmacol 7:463–477
Pendleton M, Lindsey RH Jr, Felix CA, Grimwade D, Osheroff N (2014) Topoisomerase II and leukemia. Ann N Y Acad Sci 1310:98–110. doi:10.1111/nyas.12358
Pombo-de-Oliveira MS, Koifman S, Brazilian Collaborative Study Group of Infant Acute Leukemia (2006) Infant acute leukemia and maternal exposures during pregnancy. Cancer Epidemiol Biomarkers Prev 15(12):2336–2341
Prelle C, Bursen A, Dingermann T, Marschalek R (2012) Secondary mutations in t(4;11) leukemia patients. Leukemia 27(6):1425–1427
Prieto C, Stam RW, Agraz-Doblas A, Ballerini P, Camos M, Castano J, Marschalek R, Bursen A, Varela I, Bueno C, Menendez P (2016) Activated KRAS cooperates with MLLAF4 to promote extramedullary engraftment and migration of cord blood CD34 + HSPC but is insufficient to initiate leukemia. Cancer Res 76(8):2478–2489. doi:10.1158/0008-5472
Relling MV, Yanishevski Y, Nemec J, Evans WE, Boyett JM, Behm FG, Pui CH (1998) Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 12(3):346–352
Ross JA, Potter JD, Reaman GH, Pendergrass TW, Robison LL (1996) Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children’s Cancer Group. Cancer Causes Control 7(6):581–590
Sam TN, Kersey JH, Linabery AM, Johnson KJ, Heerema NA, Hilden JM et al (2012) MLL gene rearrangements in infant leukaemia vary with age at diagnosis and selected demographic factors: a Children’s Oncology Group (COG) study. Pediatr Blood Cancer 58(6):836–839
Sanjuan-Pla A, Bueno C, Prieto C, Acha P, Stam RW, Marschalek R, Menendez P (2015) Revisiting the biology of infant t(4;11)/MLL-AF4 + B-cell acute lymphoblastic leukemia. Blood 126(25):2676–2685. doi:10.1182/blood-2015-09-667378
Schroeter A, Groh IA, Favero GD, Pignitter M, Schueller K, Somoza V, Marko D (2015) Inhibition of topoisomerase II by phase II metabolites of resveratrol in human colon cancer cells. Mol Nutr Food Res. doi:10.1002/mnfr.201500352
Spector LG, Xie Y, Robison LL, Heerema NA, Hilden JM, Lange B, Felix CA, Davies SM, Slavin J, Potter JD, Blair CK, Reaman GH, Ross JA (2005) Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children’s oncology group. Cancer Epidemiol Biomarkers Prev 14(3):651–655
Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD (2000) Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci U S A. 97(9):4790–4795
Super HJ, McCabe NR, Thirman MJ et al (1993) Rearrangements of the MLL gene in therap-related acute myeloid leukaemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 82:3705–3711
Tamai H, Inokuchi K (2013) Establishment of MLL/AF4 transgenic mice with the phenotype of lymphoblastic leukemia or lymphoma. J Nippon Med Sch. 80(5):326–327
Tamai H, Miyake K, Takatori M, Miyake N, Yamaguchi H, Dan K, Shimada T, Inokuchi K (2011) Activated K-Ras protein accelerates human MLL/AF4-induced leukemo-lymphomogenicity in a transgenic mouse model. Leukemia 25(5):888–891. doi:10.1038/leu.2011.15
Teitell MA, Pandolfi PP (2009) Molecular genetics of acute lymphoblastic leukemia. Annu Rev Pathol 4:175–198
Thys RG, Lehman CE, Pierce LCT, Wang YH (2015) Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells. Mutat Res/Fundam Mol Mech Mutagenesis 779:86–95
Tollefsen KE, Scholz S, Cronin MT, Edwards SW, de Knecht J, Crofton K, Garcia-Reyero N, Hartung T, Worth A, Patlewitz G (2014) Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA). Regul Toxiciol Pharmacol 70:629–640
Udroiu I, Sgura A (2012) Genotoxicity sensitivity of the developing hematopoietic system. 2012. Mutat Res 767:1–7
van Doorn-Khosrovani SBVW, Janssen J, Maas LM, Godschalk RW, Nijhuis JG, van Schooten FJ (2007) Dietary flavonoids induce MLL translocations in primary human CD34 + cells. Carcinogenesis 28(8):1703–1709
Vanhees K, de Bock L, Godschalk RW, van Schooten FJ, van Doorn-Khosrovani SBVW (2011) Prenatal exposure to flavonoids: implication for cancer risk. Toxicol Sci 120(1):59–67. doi:10.1093/toxsci/kfq388
Vinken M (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312:158–165
Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ (1998) MLL, a mammalian trithorax-group gene, functions as atrascriptional maintenance factor in morphogenesis. Proc Natl Acad Sci USA 95:10632–10636
Acknowledgements
We thank Dr. Kenneth McCreath for critical reading and helping with English editing and.Marcella de Maglie for figure drawing. P.M is supported by the European Research Council (CoG-2014-646903), the Spanish Ministry of Economy-Competitiveness (SAF-SAF2013-43065), the Asociación Española Contra el Cáncer, the ISCIII/FEDER (PI14/01191-PI13/00168), the Obra Social La Caixa-Fundaciò Josep Carreras, the Inocente–Inocente Foundation and Generalitat de Catalunya. P.M is investigator of the Spanish Cell Therapy cooperative network (TERCEL). The EFSA Working Group EPI1 included also the following members: Karine Angeli, ANSES, France. Ellen Fritsche, IUF, Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany. Marcel Leist, University of Konstanz, Germany. Alberto Mantovani, Istituto Superiore di Sanità, Rome, Italy. Anna Price, EU JRC, Ispra, Italy. Barbara Viviani, University of Milan, Italy
Author information
Authors and Affiliations
Consortia
Corresponding author
Ethics declarations
Ethical standards
The manuscript does not contain clinical studies or patient data.
Financial support
The authors have no financial relationship with the organisation that sponsored the research.
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
This article is based on the activity of the EFSA Working Group on Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson’s disease and childhood leukaemia. The Scientific Opinion is published in the EFSA Journal (Ockleford et al. 2017).
Rights and permissions
About this article
Cite this article
Pelkonen, O., Terron, A., Hernandez, A.F. et al. Chemical exposure and infant leukaemia: development of an adverse outcome pathway (AOP) for aetiology and risk assessment research. Arch Toxicol 91, 2763–2780 (2017). https://doi.org/10.1007/s00204-017-1986-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00204-017-1986-x