Abstract
Organ damage and resulting pathologies often involve multiple deregulated pathways. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate a multitude of genes at the post-transcriptional level. Since their discovery over two decades ago, miRNAs have been established as key players in the molecular mechanisms of mammalian biology including the maintenance of normal homeostasis and the regulation of disease pathogenesis. In recent years, there has been substantial progress in innovative techniques to measure miRNAs along with advances in targeted delivery of agents modulating their expression. This has expanded the scope of miRNAs from being important mediators of cell signaling to becoming viable quantitative biomarkers and therapeutic targets. Currently, miRNA therapeutics are in clinical trials for multiple disease areas and vast numbers of patents have been filed for miRNAs involved in various pathological states. In this review, we summarize miRNAs involved in organ injury and repair, specifically with regard to organs that are the most susceptible to injury: the liver, heart and kidney. In addition, we review the current state of knowledge on miRNA biology, miRNA biomarkers and nucleotide-based therapeutics designed to target miRNAs to prevent organ injury and promote repair.
Similar content being viewed by others
References
Adachi T et al (2010) Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 56(7):1183–1185
Aguirre A et al (2014) In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell 15(5):589–604
Ai J et al (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391(1):73–77
Anglicheau D et al (2009) MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci USA 106(13):5330–5335
Bala S et al. (2012) Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology (Baltimore, Md.) 56(5): 1946–1957
Bandiera S et al (2015) miR-122—a key factor and therapeutic target in liver disease. J Hepatol 62(2):448–457
Beavers KR, Nelson CE, Duvall CL (2015) MiRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 88:123–137
Bei Y et al (2016) miR-382 targeting PTEN-Akt axis promotes liver regeneration. Oncotarget 7(2):1584–1597
Ben-Dov IZ et al (2012) MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Transplantation 94(11):1086–1094
Bergmann O et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102
Bhatt K et al (2015) MicroRNA-687 induced by hypoxia-inducible factor-1 targets phosphatase and tensin homolog in renal ischemia-reperfusion injury. J Am Soc Nephrol JASN 26(7):1588–1596
Bhatt K et al (2010) MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med (Cambridge, Mass.) 16(9–10):409–416
Bijkerk R et al (2016) Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation. Kidney Int 89(6):1268–1280
Bonventre JV (2014) Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis. Kidney Int Suppl 4(1):39–44
Boon RA et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495(7439):107–110
Bostjancic E, Zidar N, Stajer D, Glavac D (2009) MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115(3):163–169
Bouchie A (2013) First microRNA mimic enters clinic. Nat Biotechnol 31(7):577
Breving K, Esquela-Kerscher A (2010) The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 42(8):1316–1329
Brümmer A, Hausser J (2014) MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. BioEssays: News Rev Mol Cell Dev Biol 36(6):617–626
Callis TE et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Investig 119(9):2772–2786
Castro RE et al (2013) miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol 58(1):119–125
Chan YC et al (2012) Downregulation of endothelial microRNA-200b supports cutaneous wound angiogenesis by desilencing GATA binding protein 2 and vascular endothelial growth factor receptor 2. Arterioscler Thromb Vasc Biol 32(6):1372–1382
Chau BN et al (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4(121):1–12
Chen JF et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature 38(2):228–233
Chen H et al (2011) Mir-34a is upregulated during liver regeneration in rats and is associated with the suppression of hepatocyte proliferation. PLoS One 6(5):1–7
Chen J et al (2013) mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 112(12):1557–1566
Cheung O et al (2008) Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48(6):1810–1820
Christopher AF et al (2016) MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res 7(2):68–74
Church RJ et al (2015) Beyond miR-122: identification of microRNA alterations in blood during a time course of hepatobiliary injury and biliary hyperplasia in rats. Toxicol Sci 150(1):3–14
clinicaltrials.gov. Study of Weekly RG-012 injections in patients with Alport syndrome (HERA). 2016; Available from: https://clinicaltrials.gov/ct2/show/NCT02855268?term=rg-012&rank=1
Corsten MF et al (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3(6):499–506
Cui R et al (2016) Global miRNA expression is temporally correlated with acute kidney injury in mice. PeerJ 4:1–16
da Costa Martins PA et al (2008) Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118(15):1567–1576
de Alwis NM, Day CP (2008) Non-alcoholic fatty liver disease: the mist gradually clears. J Hepatol 48:S104–S112
Dear JW et al (2014) Early detection of paracetamol toxicity using circulating liver microRNA and markers of cell necrosis. Br J Clin Pharmacol 77(5):904–905
Desai VG et al (2014) Early biomarkers of doxorubicin-induced heart injury in a mouse model. Toxicol Appl Pharmacol 281(2):221–229
Ding XC, Weiler J, Grosshans H (2009) Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends Biotechnol 27(1):27–36
Ding J et al (2015) Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci Rep 5(13729):1–10
Du P et al (2015) A biogenesis step upstream of microprocessor controls miR-17 ~ 92 expression. Cell 162(4):885–899
D’Alessandra Y et al (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31(22):2765–2773
Ferreira DM et al (2014) c-Jun N-terminal kinase 1/c-Jun activation of the p53/microRNA 34a/sirtuin 1 pathway contributes to apoptosis induced by deoxycholic acid in rat liver. Mol Cell Biol 34(6):1100–1120
Fornari F et al (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27(43):5651–5661
Fromm B et al (2015) A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49:213–242
Ge X-TT et al (2014) miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 4(6718):1–11
Gebert LF et al (2014) Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucl Acids Res 42(1):609–621
Glass C, Singla DK (2011) MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. Am J Physiol-Heart Circ Physiol 301(5):H2038–H2049. doi:10.1152/ajpheart.00271.2011
Glowacki F et al (2013) Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS One 8(2):1–11
Gomez IG et al (2015) Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Investig 125(1):141–156
Griffiths-Jones S, Saini HK, van Dongen (2008) miRBase: tools for microRNA genomics. Nucl Acids 36:D154–D158
Guo Z et al (2013) Antisense oligonucleotide treatment enhances the recovery of acute lung injury through IL-10-secreting M2-like macrophage-induced expansion of CD4 + regulatory T cells. J Immunol (Baltimore, Md.: 1950) 190(8):4337–4348
Hand NJ et al (2009) Hepatic function is preserved in the absence of mature microRNAs. Hepatology 49(2):618–626
Harrill AH et al (2016) MicroRNA biomarkers of toxicity in biological matrices. Toxicol Sci 152(2):264–272
Heidersbach A et al (2013) microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. eLife 2(e01323):1–22
Hennino M-F et al (2016) miR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy. Sci Rep 6(27209):1–9
Ho J et al (2008) Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol: JASN 19(11):2069–2075
Hodgkinson CP et al (2015) MicroRNAs and cardiac regeneration. Circ Res 116(10):1700–1711
Hsu S-HH et al (2012) Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Investig 122(8):2871–2883
Hsu A et al (2014) Systemic approach to identify serum microRNAs as potential biomarkers for acute myocardial infarction. Biomed Res Int 2014(418628):1–13
Hu J et al (2013) Plasma microRNA, a potential biomarker for acute rejection after liver transplantation. Transplantation 95(8):991–999
Hullinger TG et al (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110(1):71–81
Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110
Ivey KN et al (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2(3):219–229
Janssen HL et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694
Jayawardena TM et al (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110(11):1465–1473
Jenkins RH et al (2012) Transforming growth factor β1 represses proximal tubular cell microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding. Biochem J 443(2):407–416
Jopling C et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609
Kang YJ (2001) Molecular and cellular mechanisms of cardiotoxicity. Environ Health Perspect 109(Suppl 1):27–34
Kanki M et al (2014) Identification of urinary miRNA biomarkers for detecting cisplatin-induced proximal tubular injury in rats. Toxicology 324:158–168
Kobayashi A et al (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3(2):169–181
Köberle V, Waidmann O, Kronenberger B (2013) Serum microRNA-122 kinetics in patients with chronic hepatitis C virus infection during antiviral therapy. J Viral Hepat 20(8):530–535
Koturbash I et al (2015) microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med 9(11):1153–1176
Krauskopf J et al (2015) Application of high-throughput sequencing to circulating microRNAs reveals novel biomarkers for drug-induced liver injury. Toxicol Sci 143(2):268–276
Lameire NH et al (2013) Acute kidney injury: an increasing global concern. Lancet (London, England) 382(9887): 170–179
Lan Y-FF et al (2012) MicroRNA-494 reduces ATF3 expression and promotes AKI. J of the Am Soc Nephrol JASN 23(12):2012–2023
Laterza OF et al (2009) Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55(11):1977–1983
Lee WM (2003) Drug-induced hepatotoxicity. N Engl J Med 349(5):474–485
Lee WM (2008) Etiologies of acute liver failure. Semin Liver Dis 28(2):142–152
Li D et al (2015a) MicroRNA-31 promotes skin wound healing by enhancing keratinocyte proliferation and migration. J Invest Dermatol 135(6):1676–1685
Li D et al (2015b) MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. J Clin Investig 125(8):3008–3026
Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8):622–638
Liu N, Bezprozvannaya S, Williams AH (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254
Liu L et al (2014) miR-208a as a biomarker of isoproterenol-induced cardiac injury in Sod2 ± and C57BL/6 J wild-type mice. Toxicol Pathol 42(7):1117–1129
Liu X-JJ et al (2015a) MicroRNA-34a suppresses autophagy in tubular epithelial cells in acute kidney injury. Am J Nephrol 42(2):168–175
Liu D et al (2015b) Administration of Antagomir-223 inhibits apoptosis, promotes angiogenesis and functional recovery in rats with spinal cord injury. Cell Mol Neurobiol 35(4):483–491
Lorenzen JM et al (2014) MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J Am Soc Nephrol JASN 25(12):2717–2729
Mall C et al (2013) Stability of miRNA in human urine supports its biomarker potential. Biomark Med 7(4):623–631
Marco A, Ninova M, Griffiths-Jones S (2013) Multiple products from microRNA transcripts. Biochem Soc Trans 41(4):850–854
Marquez RT, Wendlandt E, Galle CS (2010) MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-κB signaling. Am J Physiol-Gastrointest Liver Physiol 298(4):G535–G541
Marrone AK et al (2014) MicroRNA-17 ~ 92 is required for nephrogenesis and renal function. J Am Soc Nephrol: JASN 25(7):1440–1452
Matsumoto S et al (2013) Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 113(3):322–326
Meer AJ, Farid WRR, Sonneveld MJ (2013) Sensitive detection of hepatocellular injury in chronic hepatitis C patients with circulating hepatocyte-derived microRNA-122. J Viral Hepat 20(3):158–166
Michalopoulos G, DeFrances M (1997) Liver regeneration. Science 276(5309):60–66
Miyaaki H et al (2014) Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int 34(7):e302–e307
Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20(12):1604–1614
Mohd Hanafiah K et al (2013) Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology (Baltimore, MD) 57(4):1333–1342
Montgomery RL et al (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124(14):1537–1547
Nagalakshmi VK et al (2011) Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int 79(3):317–330
Nagano T et al (2013) Liver-specific microRNAs as biomarkers of nanomaterial-induced liver damage. Nanotechnology 24:1–7
Ng R et al (2012) A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest 122(3):1097–1108
Ninomiya M et al (2016) The expression of miR-125b-5p is increased in the serum of patients with chronic hepatitis B infection and inhibits the detection of hepatitis B virus surface antigen. J Viral Hepatitis 23(5):330–339
Nishimura Y et al (2015) Plasma miR-208 as a useful biomarker for drug-induced cardiotoxicity in rats. J Appl Toxicol JAT 35(2):173–180
Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187(2):249–253
Oliveira-Carvalho V, Carvalho VO, Bocchi EA (2013) The emerging role of miR-208a in the heart. DNA Cell Biol 32(1):8–12
Ozer J et al (2008) The current state of serum biomarkers of hepatotoxicity. Toxicology 245(3):194–205
Ørom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471
Pan C et al (2012) Down-regulation of MiR-127 facilitates hepatocyte proliferation during rat liver regeneration. PLoS One 7(6):1–10
Pastar I et al (2012) Induction of specific microRNAs inhibits cutaneous wound healing. J Biol Chem 287(35):29324–29335
Pavkovic M, Riefke B, Ellinger-Ziegelbauer H (2014) Urinary microRNA profiling for identification of biomarkers after cisplatin-induced kidney injury. Toxicology 324:147–157
Pavkovic M, Vaidya VS (2016) MicroRNAs and drug-induced kidney injury. Pharmacol Ther 163:48–57
Pellegrini KL et al (2014) MicroRNA-155 deficient mice experience heightened kidney toxicity when dosed with cisplatin. Toxicol Sci 141(2):484–492
Pellegrini KL et al (2015) Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis. Toxicol Appl Pharmacol 312:42–52
Porrello ER et al (2011a) Transient regenerative potential of the neonatal mouse heart. Sci (New York, N.Y.) 331(6020):1078–1080
Porrello ER, Johnson BA, Aurora AB (2011b) MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circulation 109(6):670–679
Porrello ER et al (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA 110(1):187–192
Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190
Qureshi ZP et al (2011) Market withdrawal of new molecular entities approved in the United States from 1980 to 2009. Pharmacoepidemiol Drug Saf 20(7):772–777
Ramachandran K et al (2013) Human miRNome profiling identifies microRNAs differentially present in the urine after kidney injury. Clin Chem 59(12):1742–1752
Rewa O, Bagshaw SM (2014) Acute kidney injury-epidemiology, outcomes and economics. Nat Revi Nephrol 10(4):193–207
Rodrigues PM et al (2015) Inhibition of NF-κB by deoxycholic acid induces miR-21/PDCD4-dependent hepatocellular apoptosis. Sci Rep 5(17528):1–17
Roy S et al (2016) Down-regulation of miR-192-5p protects from oxidative stress-induced acute liver injury. Clin Sci (London, England: 1979 130(14):1197–1207
Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86
Saikumar J et al (2012) Expression, circulation, and excretion profile of microRNA-21,-155, and-18a following acute kidney injury. Toxicol Sci 129(2):256–267
Saikumar J, Ramachandran K, Vaidya VS (2014) Noninvasive micromarkers. Clin Chem 60(9):1158–1173
Saxena A, Tabin CJ (2010) miRNA-processing enzyme Dicer is necessary for cardiac outflow tract alignment and chamber septation. Proc Natl Acad Sci 107(1):87–91
Sekine S et al (2009a) Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 136(7):2304–2315
Sekine S et al (2009b) Dicer is required for proper liver zonation. J Pathol 219(3):365–372
Seok J-KK et al (2014) MicroRNA-382 induced by HIF-1α is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucl Acids Res 42(12):8062–8072
Sequeira-Lopez MS et al (2010) The MicroRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol 21(3):460–467
Sharma AD et al (2011) MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology (Baltimore, Md.) 53(5):1651–1661
Song G et al (2010) MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology 51(5):1735–1743
Starkey Lewis PJ et al. (2011) Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology (Baltimore, Md.) 54(5):1767–1776
Su H et al (2009) Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 23(3):304–317
Sun L et al (2016) miR-23b improves cognitive impairments in traumatic brain injury by targeting ATG12-mediated neuronal autophagy. Behav Brain Res. doi:10.1016/j.bbr.2016.09.020
Susantitaphong P et al (2013) World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol CJASN 8(9):1482–1493
Tang R et al (2012) Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 22(3):504–515
Tony H, Yu K, Qiutang Z (2015) MicroRNA-208a silencing attenuates doxorubicin induced myocyte apoptosis and cardiac dysfunction. Oxid Med Cell Longev 2015:1–6
Tsai W-CC et al (2012) MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Investig 122(8):2884–2897
van Rooij E et al (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17(5):662–673
van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507
Vaidya VS et al (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 28(5):478–485
Vaporidi K, Vergadi E, Kaniaris E, Hatziapostolou M, Lagoudaki E, Georgopoulos D, Zapol WM, Bloch KD, Iliopoulos D (2012) Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 303(3):L199–L207
Waikar SS et al (2012) Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol JASN 23(1):13–21
Wang K et al (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 106(11):4402–4407
Wang G-KK et al (2010a) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666
Wang J et al (2010b) Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism. Dev Cell 19(6):903–912
Wang J et al (2010c) TransmiR: a transcription factor-microRNA regulation database. Nucl Acids Res 38(Database issue):D119–D122
Wang H et al (2015) Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev 81:142–160
Ward J et al (2014) Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci USA 111(33):12169–12174
Wei Q et al (2010) Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J Am Soc Nephrol JASN 21(5):756–761
Wei Y et al (2014) Importin 8 regulates the transport of mature MicroRNAs into the cell nucleus. J Biol Chem 289(15):10270–10275
Wei Q et al (2016) MicroRNA-489 induction by hypoxia-inducible factor-1 protects against ischemic kidney injury. J Am Soc Nephrol JASN 27:2784–2796
Xie T et al (2012) MicroRNA-127 inhibits lung inflammation by targeting IgG Fcγ receptor I. J Immunol (Baltimore, Md.: 1950) 188(5):2437–2444
Yamakuchi M, Ferlito M (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci 105(36):13421–13426
Yamaura Y et al (2012) Plasma microRNA profiles in rat models of hepatocellular injury, cholestasis, and steatosis. PLoS One 7(2):1–13
Yan-nan B et al (2014) MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3 K/Akt signaling by targeting PTEN. Biochem Biophys Res Commun 443(3):802–807
Yang D et al (2016) MicroRNA-125b-5p mimic inhibits acute liver failure. Nat Commun 7(11916):1–11
Yin K-JJ et al (2010) miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 38(1):17–26
Yoshioka W, Higashiyama W, Tohyama C (2011) Involvement of microRNAs in dioxin-induced liver damage in the mouse. Toxicol Sci 122(2):457–465
Yuan B et al (2011) Down-regulation of miR-23b may contribute to activation of the TGF-β1/Smad3 signalling pathway during the termination stage of liver regeneration. FEBS Lett 585(6):927–934
Yuan Q et al (2013) MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology (Baltimore, Md.) 57(1):299–310
Zeng Z et al (2013) Upregulation of miR-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury. Exp Lung Res 39(7):275–282
Zhao Y et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2):303–317
Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214–220
Zhong X et al (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56(3):663–674
Zhou J et al (2012) Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PLoS one 7(4):1–7
Acknowledgements
We thank Dr. Mira Pavkovic and Dr. Mariana Cardenas-Gonzalez for invaluable suggestions during the write up of this review article. Work in the Vaidya laboratory was supported by Outstanding New Environmental Sciences (ONES) award from NIH/NIEHS (ES017543) and Innovation in Regulatory Science Award from Burroughs Wellcome Fund (BWF-1012518).