Methyleugenol DNA adducts in human liver are associated with SULT1A1 copy number variations and expression levels

Abstract

Methyleugenol is a rodent hepatocarcinogen occurring in many herbs and spices as well as essential oils used for flavoring. Following metabolic activation by cytochromes P450 (CYPs) and sulfotransferases (SULTs), methyleugenol can form DNA adducts. Previously, we showed that DNA adduct formation by methyleugenol in mouse liver is dependent on SULT1A1 expression and that methyleugenol DNA adducts are abundant in human liver specimens. In humans, SULT1A1 activity is affected by genetic polymorphisms, including single-nucleotide polymorphisms (SNPs) and copy number variations (CNVs). Here we investigated the relationship between individual methyleugenol DNA adduct levels and SULT1A1 in human liver samples. Using isotope-dilution ultraperformance liquid chromatography coupled with tandem mass spectrometry, we quantified methyleugenol DNA adducts in 121 human surgical liver samples. Frequent CNVs, including deletions (f = 3.3%) and duplications (f = 36.4%) of SULT1A1, were identified using qPCR and TaqMan assays in the donors’ genomic DNA. SULT1A1 mRNA and protein levels were quantified using microarray data and Western blot analysis, respectively. Methyleugenol DNA adducts were detected in all 121 liver samples studied. Their levels varied 122-fold between individuals and were significantly correlated to both mRNA and protein levels of SULT1A1 (r s = 0.43, and r s = 0.44, respectively). Univariate and multivariate statistical analysis identified significant associations of SULT1A1 CNVs with mRNA (p = 1.7 × 10−06) and protein (p = 4.4 × 10− 10) levels as well as methyleugenol DNA adduct levels (p = 0.003). These data establish the importance of SULT1A1 genotype for hepatic methyleugenol DNA adducts in humans, and they confirm a strong impact of SULT1A1 CNVs on SULT1A1 hepatic phenotype.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al-Subeihi AAA, Alhusainy W, Kiwamoto R, Spenkelink B, van Bladeren PJ, Rietjens IMCM, Punt A (2015) Evaluation of the interindividual human variation in bioactivation of methyleugenol using physiologically based kinetic modeling and Monte Carlo simulations. Toxicol Appl Pharmacol 283:117–126. doi:10.1016/j.taap.2014.12.009

    CAS  Article  PubMed  Google Scholar 

  2. Boberg EW, Miller EC, Miller JA, Poland A, Liem A (1983) Strong evidence from studies with brachymorphic mice and pentachlorophenol that 1′-sulfoöxysafrole is the major ultimate electrophilic and carcinogenic metabolite of 1′-hydroxysafrole in mouse liver. Cancer Res 43:5163–5173

    CAS  PubMed  Google Scholar 

  3. De Vincenzi M, Silano M, Stacchini P, Scazzocchio B (2000) Constituents of aromatic plants: I. Methyleugenol. Fitoterapia 71:216–221. doi:10.1016/S0367-326X(99)00150-1

    Article  PubMed  Google Scholar 

  4. Engelke CE, Meinl W, Boeing H, Glatt H (2000) Association between functional genetic polymorphisms of human sulfotransferases 1A1 and 1A2. Pharmacogenetics 10:163–169

    CAS  Article  PubMed  Google Scholar 

  5. European Union (2001) Opinion of the Scientific Committee on Food on Methyleugenol (4-Allyl-1,2-dimethoxybenzene). https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out102_en.pdf. Accessed 10 Feb 2017

  6. Gaedigk A, Twist GP, Leeder JS (2012) CYP2D6, SULT1A1 and UGT2B17 copy number variation: quantitative detection by multiplex PCR. Pharmacogenomics 13:91–111. doi:10.2217/pgs.11.135

    CAS  Article  PubMed  Google Scholar 

  7. Gjerde J, Hauglid M, Breilid H, Lundgren S, Varhaug JE, Kisanga ER, Mellgren G, Steen VM, Lien EA (2008) Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol 19:56–61. doi:10.1093/annonc/mdm434

    CAS  Article  PubMed  Google Scholar 

  8. Glatt H, Meinl W (2004) Pharmacogenetics of soluble sulfotransferases (SULTs). Naunyn Schmiedebergs Arch Pharmacol 369:55–68. doi:10.1007/s00210-003-0826-0

    CAS  Article  PubMed  Google Scholar 

  9. Gomes AM, Winter S, Klein K, Turpeinen M, Schaeffeler E, Schwab M, Zanger UM (2009) Pharmacogenomics of human liver cytochrome P450 oxidoreductase: multifactorial analysis and impact on microsomal drug oxidation. Pharmacogenomics 10:579–599. doi:10.2217/pgs.09.7

    CAS  Article  PubMed  Google Scholar 

  10. Hebbring SJ, Adjei AA, Baer JL, Jenkins GD, Zhang J, Cunningham JM, Schaid DJ, Weinshilboum RM, Thibodeau SN (2007) Human SULT1A1 gene: copy number differences and functional implications. Hum Mol Genet 16:463–470. doi:10.1093/hmg/ddl468

    CAS  Article  PubMed  Google Scholar 

  11. Heroux JA, Falany CN, Roth JA (1989) Immunological characterization of human phenol sulfotransferase. Mol Pharmacol 36:29–33

    CAS  PubMed  Google Scholar 

  12. Herrmann K, Engst W, Appel KE, Monien BH, Glatt H (2012) Identification of human and murine sulfotransferases able to activate hydroxylated metabolites of methyleugenol to mutagens in Salmonella typhimurium and detection of associated DNA adducts using UPLC-MS/MS methods. Mutagenesis 27:453–462. doi:10.1093/mutage/ges004

    CAS  Article  PubMed  Google Scholar 

  13. Herrmann K, Schumacher F, Engst W, Appel KE, Klein K, Zanger UM, Glatt H (2013) Abundance of DNA adducts of methyleugenol, a rodent hepatocarcinogen, in human liver samples. Carcinogenesis. doi:10.1093/carcin/bgt013

    Google Scholar 

  14. Herrmann K, Engst W, Meinl W, Florian S, Cartus AT, Schrenk D, Appel KE, Nolden T, Himmelbauer H, Glatt H (2014) Formation of hepatic DNA adducts by methyleugenol in mouse models: drastic decrease by Sult1a1 knockout and strong increase by transgenic human SULT1A1/2. Carcinogenesis 35:935–941. doi:10.1093/carcin/bgt408

    CAS  Article  PubMed  Google Scholar 

  15. Herrmann K, Engst W, Florian S, Lampen A, Meinl W, Glatt HR (2016) The influence of the SULT1A status—wild-type, knockout or humanized—on the DNA adduct formation by methyleugenol in extrahepatic tissues of mice. Toxicol Res 5:808–815. doi:10.1039/C5TX00358J

    CAS  Article  Google Scholar 

  16. Jeurissen SMF, Bogaards JJP, Boersma MG, ter Horst JPF, Awad HM, Fiamegos YC, van Beek TA, Alink GM, Sudhölter EJR, Cnubben NHP, Rietjens IMCM (2006) Human cytochrome p450 enzymes of importance for the bioactivation of methyleugenol to the proximate carcinogen 1′-hydroxymethyleugenol. Chem Res Toxicol 19:111–116. doi:10.1021/tx050267h

    CAS  Article  PubMed  Google Scholar 

  17. Kim S (2015) Ppcor: an r package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods 22:665–674. doi:10.5351/CSAM.2015.22.6.665

    PubMed  PubMed Central  Google Scholar 

  18. Klein K, Winter S, Turpeinen M, Schwab M, Zanger UM (2010) Pathway-Targeted Pharmacogenomics of CYP1A2 in Human Liver. Front Pharmacol. doi:10.3389/fphar.2010.00129

    PubMed  PubMed Central  Google Scholar 

  19. Koenker R (2015) Quantreg: quantile regression. R package version 5.11. http://CRAN.R-project.org/package=quantreg

  20. Meinl W, Pabel U, Osterloh-Quiroz M, Hengstler JG, Glatt H (2006) Human sulphotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int J Cancer 118:1090–1097. doi:10.1002/ijc.21480

    CAS  Article  PubMed  Google Scholar 

  21. Miller EC, Swanson AB, Phillips DH, Fletcher TL, Liem A, Miller JA (1983) Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and synthetic alkenylbenzene derivatives related to safrole and estragole. Cancer Res 43:1124–1134

    CAS  PubMed  Google Scholar 

  22. Monien BH, Schumacher F, Herrmann K, Glatt H, Turesky RJ, Chesné C (2015) Simultaneous detection of multiple DNA adducts in human lung samples by isotope-dilution UPLC-MS/MS. Anal Chem 87:641–648. doi:10.1021/ac503803m

    CAS  Article  PubMed  Google Scholar 

  23. National Toxicology Program (2000) NTP Toxicology and Carcinogenesis Studies of Methyleugenol (CAS NO. 93-15-2) in F344/N Rats and B6C3F1 Mice (Gavage Studies). Natl Toxicol Program Tech Rep Ser 491:1–412

    Google Scholar 

  24. Phillips DH, Reddy MV, Randerath K (1984) 32P-Post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. II. Newborn male B6C3F1 mice. Carcinogenesis 5:1623–1628. doi:10.1093/carcin/5.12.1623

    CAS  Article  PubMed  Google Scholar 

  25. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/

  26. Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM (1997) Phenol sulfotransferase pharmacogenetics in humans: association of common SULT1A1 alleles with TS PST phenotype. Biochem Biophys Res Commun 239:298–304. doi:10.1006/bbrc.1997.7466

    CAS  Article  PubMed  Google Scholar 

  27. Riches Z, Stanley EL, Bloomer JC, Coughtrie MWH (2009) Quantitative evaluation of the expression and activity of five major Sulfotransferases (SULTs) in human tissues: the SULT “Pie”. Drug Metab Dispos 37:2255–2261. doi:10.1124/dmd.109.028399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Sak K, Everaus H (2016) Sulfotransferase 1A1 as a biomarker for susceptibility to carcinogenesis: from molecular genetics to the role of dietary flavonoids. Curr Drug Metab 17:528–541. doi:10.2174/1389200217666160219113924

    CAS  Article  PubMed  Google Scholar 

  29. Schröder A, Klein K, Winter S, Schwab M, Bonin M, Zell A, Zanger UM (2013) Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. Pharmacogenomics J 13:12–20. doi:10.1038/tpj.2011.44

    Article  PubMed  Google Scholar 

  30. Tan KH, Nishida R (2012) Methyl eugenol: its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J Insect Sci. doi:10.1673/031.012.5601

    PubMed  PubMed Central  Google Scholar 

  31. Teubner W, Meinl W, Florian S, Kretzschmar M, Glatt H (2007) Identification and localization of soluble sulfotransferases in the human gastrointestinal tract. Biochem J 404:207–215. doi:10.1042/BJ20061431

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Tretyakova N, Goggin M, Sangaraju D, Janis G (2012) Quantitation of DNA adducts by stable isotope dilution mass spectrometry. Chem Res Toxicol 25:2007–2035. doi:10.1021/tx3002548

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Williams GM, Iatropoulos MJ, Jeffrey AM, Duan J-D (2013) Methyleugenol hepatocellular cancer initiating effects in rat liver. Food Chem Toxicol 53:187–196. doi:10.1016/j.fct.2012.11.050

    CAS  Article  PubMed  Google Scholar 

  34. Yu X, Dhakal IB, Beggs M, Edavana VK, Williams S, Zhang X, Mercer K, Ning B, Lang NP, Kadlubar FF, Kadlubar S (2010) Functional genetic variants in the 3′-untranslated region of sulfotransferase isoform 1A1 (SULT1A1) and their effect on enzymatic activity. Toxicol Sci Off J Soc Toxicol 118:391–403. doi:10.1093/toxsci/kfq296

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Robert Bosch Foundation, Stuttgart, Germany, and the German Federal Institute for Risk Assessment, Berlin, Germany (Grant FK-3-1329.421.1 + 2). R.T. was partially supported by a European Commission Horizon 2020 UPGx grant (668353). Britta Klumpp and Igor Liebermann are gratefully acknowledged for excellent technical assistance. We also thank Dr. Stefan Winter for expert advice concerning statistical analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ulrich M. Zanger.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

R. Tremmel and K. Herrmann contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 722 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tremmel, R., Herrmann, K., Engst, W. et al. Methyleugenol DNA adducts in human liver are associated with SULT1A1 copy number variations and expression levels. Arch Toxicol 91, 3329–3339 (2017). https://doi.org/10.1007/s00204-017-1955-4

Download citation

Keyword

  • Copy number variation
  • DNA adducts
  • Human liver
  • Methyleugenol
  • Pharmacogenetics/genomics
  • SULT1A1 expression