Skip to main content

High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation

Abstract

Neuroinflammation is a pathophysiological process present in a number of neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, stroke, traumatic brain injury including chronic traumatic encephalopathy and other age-related CNS disorders. Although there is still much debate about the initial trigger for some of these neurodegenerative disorders, during the progression of disease, broad range anti-inflammatory drugs including cytokine suppressive anti-inflammatory drugs (CSAIDs) might be promising therapeutic options to limit neuroinflammation and improve the clinical outcome. One of the most promising CSAIDs is curcumin, which modulates the activity of several transcription factors (e.g., STAT, NF-κB, AP-1) and their pro-inflammatory molecular signaling pathways. However, normal curcumin preparations demonstrate low bioavailability in vivo. To increase bioavailability, preparations of high bioavailability curcumin have been introduced to achieve therapeutically relevant concentrations in target tissues. This literature review aims to summarize the pharmacokinetic and toxicity profile of different curcumin formulations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Adapted from Wilken et al. (2011)

Fig. 3

Adapted from Rose-John (2012)

References

  1. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007a) Curcumin: the Indian solid gold. In: Aggarwal BB, Surh Y-J, Shishodia S (eds) The molecular targets and therapeutic uses of curcumin in health and disease. Springer US, Boston, pp 1–75

    Chapter  Google Scholar 

  2. Aggarwal BB, Surh Y-J, Shishodia S (2007b) The molecular targets and therapeutic uses of curcumin in health and disease, vol 595. Springer Science & Business Media, Springer US, Boston

  3. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778

    CAS  Article  PubMed  Google Scholar 

  4. Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Antony B, Merina B, Iyer VS, Judy N, Lennertz K, Joyal S (2008) A pilot cross-over study to evaluate human oral bioavailability of BCM-95®CG (Biocurcumax™), a novel bioenhanced preparation of curcumin. Indian J Pharm Sci 70(4):445

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Basnet P, Tho I, Skalko-Basnet N (2010) Curcumin a wonder drug of 21st century: liposomal delivery system targeting vaginal inflammation. In: 5th International Congress on Complementary Medicine Research, Tromsø, Norway

  7. Baum L, Lam CW, Cheung SK, et al. (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol. doi:10.1097/jcp.0b013e318160862c

    PubMed  Google Scholar 

  8. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet (London, England) 368(9533):387–403. doi:10.1016/s0140-6736(06)69113-7

    CAS  Article  Google Scholar 

  9. Bombardelli E, Curri S, Della L, Del N, Tubaro A, Gariboldi P (1989) Complexes between phospholipids and vegetal derivatives of biological interest. Fitoterapia 60:1–9

    Google Scholar 

  10. Bombardelli E, Cristoni A, Morazzoni P (1994) Phytosomes in functional cosmetics. Fitoterapia 65:387–401

    CAS  Google Scholar 

  11. Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. In: Jellinger K, Fazekas F, Windisch M (eds) Ageing and dementia, vol 53. Springer, Vienna, pp 127–140

  12. Campbell IL, Erta M, Lim SL et al (2014) Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci 34(7):2503–2513. doi:10.1523/jneurosci.2830-13.2014

    CAS  Article  PubMed  Google Scholar 

  13. Carroll RE, Benya RV, Turgeon DK et al (2011) Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res 4(3):354–364. doi:10.1158/1940-6207.capr-10-0098

    CAS  Article  Google Scholar 

  14. Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med (New York NY) 9(1):161–168. doi:10.1089/107555303321223035

    Article  Google Scholar 

  15. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87(1):44–53

    CAS  Google Scholar 

  16. Cheng A-L, Hsu C-H, Lin J-K et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):2895–2900

    CAS  PubMed  Google Scholar 

  17. Citernesi U, Sciacchitano M (1995) Phospholipid/active ingredient complexes. Cosmet Toilet 110(11):57–68

    CAS  Google Scholar 

  18. Cornago P, Claramunt RM, Bouissane L, Alkorta I, Elguero J (2008) A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron 64(35):8089–8094. doi:10.1016/j.tet.2008.06.065

    CAS  Article  Google Scholar 

  19. Cox KH, Pipingas A, Scholey AB (2015) Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol 29(5):642–651. doi:10.1177/0269881114552744

    CAS  Article  PubMed  Google Scholar 

  20. Cuomo J, Appendino G, Dern AS et al (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod 74(4):664–669. doi:10.1021/np1007262

    CAS  Article  PubMed  Google Scholar 

  21. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. doi:10.1038/nrn2297

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Davis S, Laroche S (2003) What can rodent models tell us about cognitive decline in Alzheimer’s disease? Mol Neurobiol 27(3):249–276. doi:10.1385/mn:27:3:249

    CAS  Article  PubMed  Google Scholar 

  23. Dhillon N, Aggarwal BB, Newman RA et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499. doi:10.1158/1078-0432.ccr-08-0024

    CAS  Article  PubMed  Google Scholar 

  24. DiSilvestro RA, Joseph E, Zhao S, Bomser J (2012) Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J 11:79. doi:10.1186/1475-2891-11-79

  25. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145. doi:10.1016/j.it.2007.01.005

    CAS  Article  PubMed  Google Scholar 

  26. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. doi:10.1056/nejm199902113400607

    CAS  Article  PubMed  Google Scholar 

  27. Ganiger S, Malleshappa HN, Krishnappa H, Rajashekhar G, Ramakrishna Rao V, Sullivan F (2007) A two generation reproductive toxicity study with curcumin, turmeric yellow, in Wistar rats. Food Chem Toxicol 45(1):64–69 doi:10.1016/j.fct.2006.07.016

    CAS  Article  PubMed  Google Scholar 

  28. Garcea G, Berry DP, Jones DJ et al (2005) Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cospons Am Soc Prev Int Soc Cell 14(1):120–125

    CAS  Google Scholar 

  29. Goel A, Aggarwal BB (2010) Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer 62(7):919–930. doi:10.1080/01635581.2010.509835

    CAS  Article  PubMed  Google Scholar 

  30. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75(4):787–809. doi:10.1016/j.bcp.2007.08.016

    CAS  Article  PubMed  Google Scholar 

  31. Guerreiro RJ, Santana I, Bras JM, Santiago B, Paiva A, Oliveira C (2007) Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener Dis 4(6):406–412. doi:10.1159/000107700

    CAS  Article  PubMed  Google Scholar 

  32. He P, Zhong Z, Lindholm K et al (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178(5):829–841. doi:10.1083/jcb.200705042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20. doi:10.1042/bj20030407

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nature reviews Immunology 14(7):463–477. doi:10.1038/nri3705

    CAS  Article  PubMed  Google Scholar 

  35. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. The Lancet Neurology 14(4):388–405. doi:10.1016/s1474-4422(15)70016-5

    CAS  Article  PubMed  Google Scholar 

  36. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? The Lancet Neurology 8(4):382–397. doi:10.1016/s1474-4422(09)70062-6

    CAS  Article  PubMed  Google Scholar 

  37. Honda M, Yamamoto S, Cheng M, et al. (1992) Human soluble IL-6 receptor: its detection and enhanced release by HIV infection. J Immunol (Baltimore, Md: 1950) 148(7):2175–2180

    CAS  Google Scholar 

  38. Hoppe JB, Coradini K, Frozza RL et al (2013) Free and nanoencapsulated curcumin suppress beta-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3beta signaling pathway. Neurobiol Learn Mem 106:134–144. doi:10.1016/j.nlm.2013.08.001

    CAS  Article  PubMed  Google Scholar 

  39. Jäger R, Lowery RP, Calvanese AV, Joy JM, Purpura M, Wilson JM (2014) Comparative absorption of curcumin formulations. Nutr J 13(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2005) Chemistry and biological activities of C. longa. Trends Food Sci Technol 16(12):533–548 doi:10.1016/j.tifs.2005.08.006

    CAS  Article  Google Scholar 

  41. Kanai M, Yoshimura K, Asada M et al (2011) A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 68(1):157–164. doi:10.1007/s00280-010-1470-2

    CAS  Article  PubMed  Google Scholar 

  42. Kanai M, Imaizumi A, Otsuka Y et al (2012) Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol 69(1):65–70. doi:10.1007/s00280-011-1673-1

    CAS  Article  PubMed  Google Scholar 

  43. Kidd P, Head K (2005) A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylcholine complex (Siliphos). Alternative medicine review : a journal of clinical therapeutic 10(3):193–203

    Google Scholar 

  44. Kocher A, Schiborr C, Behnam D, Frank J (2015) The oral bioavailability of curcuminoids in healthy humans is markedly enhanced by micellar solubilisation but not further improved by simultaneous ingestion of sesamin, ferulic acid, naringenin and xanthohumol. J Funct Foods 14:183–191

    CAS  Article  Google Scholar 

  45. Lopez-Lazaro M (2008) Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 52(Suppl 1):S103–27 doi:10.1002/mnfr.200700238

    PubMed  Google Scholar 

  46. Lust JA, Donovan KA, Kline MP, Greipp PR, Kyle RA, Maihle NJ (1992) Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor. Cytokine 4(2):96–100

    CAS  Article  PubMed  Google Scholar 

  47. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    CAS  PubMed  Google Scholar 

  48. Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ (2007) Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemoth Pharm 60(2):171–177. doi:10.1007/s00280-006-0355-x

    CAS  Article  Google Scholar 

  49. Mathew A, Pushpanath S (2005) Indian spices. DEE BEE Info Publications, India

  50. Mauri P, Simonetti P, Gardana C et al (2001) Liquid chromatography/atmospheric pressure chemical ionization mass spectrometry of terpene lactones in plasma of volunteers dosed with Ginkgo biloba L. extracts. RCM 15(12):929–934. doi:10.1002/rcm.316

    CAS  PubMed  Google Scholar 

  51. Meager (2004) Cytokines: interleukins. In: Meyers R (ed) Encyclopedia of molecular cell biology and molecular medicine, Wiley-Blackwell, Hoboken, New Jersey, pp 115–151

  52. Meda L, Cassatella MA, Szendrei GI et al (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374(6523):647–650. doi:10.1038/374647a0

    CAS  Article  PubMed  Google Scholar 

  53. Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol Aging 22(6):885–893

    CAS  Article  PubMed  Google Scholar 

  54. Milobedzka J, von Kostanecki S (1910) On knowledge of curcumin. Ber Dtsch Chem Ges 43:2163–2170. doi:10.1002/cber.191004302168

  55. Morgan D, Gordon MN, Tan J, Wilcock D, Rojiani AM (2005) Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J Neuropathol Exp Neurol 64(9):743–753

    CAS  Article  PubMed  Google Scholar 

  56. National Toxicology P (1993) NTP toxicology and carcinogenesis studies of turmeric oleoresin (CAS No. 8024-37-1) (major component 79%–85% curcumin, CAS No. 458-37-7) in F344/N rats and B6C3F1 Mice (feed studies). Natl Toxicol Program Tech Rep Ser 427:1–275

    Google Scholar 

  57. Norman J (1991) The complete book of spices. Viking Studio Books, Penguin Books USA Inc, Westminster, London

  58. Novick D, Engelmann H, Wallach D, Rubinstein M (1989) Soluble cytokine receptors are present in normal human urine. J Exp Med 170(4):1409–1414

    CAS  Article  PubMed  Google Scholar 

  59. Parada E, Buendia I, Navarro E, Avendano C, Egea J, Lopez MG (2015) Microglial HO-1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects. Mol Nutr Food Res 59(9):1690–1700 doi:10.1002/mnfr.201500279

    CAS  Article  PubMed  Google Scholar 

  60. Pawar YB, Munjal B, Arora S, Karwa M, Kohli G, Paliwal JK, Bansal AK (2012) Bioavailability of a lipidic formulation of curcumin in healthy human volunteers. Pharmaceutics 4(4):517–530

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Payton F, Sandusky P, Alworth WL (2007) NMR study of the solution structure of curcumin. J Nat Prod 70(2):143–146. doi:10.1021/np060263s

    CAS  Article  PubMed  Google Scholar 

  62. Priyadarsini KI (2013) Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 19(11):2093–2100

    CAS  PubMed  Google Scholar 

  63. Ringman JM, Frautschy SA, Teng E, et al. (2012) Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer’s Res Ther 4(5):1–8 doi:10.1186/alzrt146

    Google Scholar 

  64. Rogers JT, Leiter LM, McPhee J et al (1999) Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 274(10):6421–6431

    CAS  Article  PubMed  Google Scholar 

  65. Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci 8(9):1237–1247. doi:10.7150/ijbs.4989

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Roughley PJ, Whiting DA (1973) Experiments in the biosynthesis of curcumin. J Chem Soc Perkin Trans 1(0):2379–2388. doi:10.1039/P19730002379

    Article  Google Scholar 

  67. Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J (2014) The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res 58(3):516–527

    CAS  Article  PubMed  Google Scholar 

  68. Shaiju B (2008) Psychological problem of patients with rheumatoid arthritis and guidelines for health professionals. Nurs J India 99(9):202–204

  69. Sharma RA, McLelland HR, Hill KA et al (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7(7):1894–1900

    CAS  PubMed  Google Scholar 

  70. Sharma RA, Euden SA, Platton SL et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10(20):6847–6854. doi:10.1158/1078-0432.ccr-04-0744

    CAS  Article  PubMed  Google Scholar 

  71. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer (Oxford, England: 1990) 41(13):1955–1968. doi:10.1016/j.ejca.2005.05.009

    CAS  Article  Google Scholar 

  72. Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13(2):139–145. doi:10.1038/nm1551

    CAS  Article  PubMed  Google Scholar 

  73. Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941. doi:10.1016/j.biopsych.2010.06.012

    CAS  Article  PubMed  Google Scholar 

  74. Swomley AM, Butterfield DA (2015) Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol 89(10):1669–1680. doi:10.1007/s00204-015-1556-z

    CAS  Article  PubMed  Google Scholar 

  75. Tan ZS, Seshadri S (2010) Inflammation in the Alzheimer’s disease cascade: culprit or innocent bystander? Alzheimer’s Res Ther 2(2):6. doi:10.1186/alzrt29

    Article  Google Scholar 

  76. Tiwari SK, Agarwal S, Seth B et al (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS nano 8(1):76–103. doi:10.1021/nn405077y

    CAS  Article  PubMed  Google Scholar 

  77. Tsai YM, Chien CF, Lin LC, Tsai TH (2011) Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm 416(1):331–338. doi:10.1016/j.ijpharm.2011.06.030

    CAS  Article  PubMed  Google Scholar 

  78. Vergoni AV, Tosi G, Tacchi R, Vandelli MA, Bertolini A, Costantino L (2009) Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomed Nanotechnol Biol Med 5(4):369–377. doi:10.1016/j.nano.2009.02.005

    CAS  Article  Google Scholar 

  79. Wahlstrom B, Blennow G (1978) A study on the fate of curcumin in the rat. Acta pharmacologica et toxicologica 43(2):86–92

    CAS  Article  PubMed  Google Scholar 

  80. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1):181–193. doi:10.1016/j.neuron.2004.09.010

    CAS  Article  PubMed  Google Scholar 

  81. Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30(4):552–557. doi:10.1042/

    CAS  Article  PubMed  Google Scholar 

  82. Wang YJ, Pan MH, Cheng AL et al (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15(12):1867–1876

    CAS  Article  PubMed  Google Scholar 

  83. Wilken R, Veena MS, Wang MB, Srivatsan ES (2011) Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:12. doi:10.1186/1476-4598-10-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Yanagisawa D, Shirai N, Amatsubo T et al (2010) Relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities in the context of therapies for Alzheimer’s disease. Biomaterials 31(14):4179–4185. doi:10.1016/j.biomaterials.2010.01.142

    CAS  Article  PubMed  Google Scholar 

  85. Yang Z, Zhao T, Zou Y, Zhang JH, Feng H (2014) Curcumin inhibits microglia inflammation and confers neuroprotection in intracerebral hemorrhage. Immunol Lett 160(1):89–95. doi:10.1016/j.imlet.2014.03.005

    CAS  Article  PubMed  Google Scholar 

  86. Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45(2):27–37. doi:10.1097/AIA.0b013e318034194e

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Zhang Q, Kang R, Zeh HJ 3rd, Lotze MT, Tang D (2013) DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy 9(4):451–458. doi:10.4161/auto.23691

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the moral and financial support of Graduate research school, Western Sydney University, most particularly our Research fellowships committee. My thanks also go out to our Pharmacology group, School of Medicine and all the academic and technical staff for their kind support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Garry Niedermayer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ullah, F., Liang, A., Rangel, A. et al. High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Arch Toxicol 91, 1623–1634 (2017). https://doi.org/10.1007/s00204-017-1939-4

Download citation

Keywords

  • Neuroinflammation
  • Curcumin
  • Pharmacokinetics
  • Microglia