Archives of Toxicology

, Volume 91, Issue 6, pp 2455–2467 | Cite as

Patulin transformation products and last intermediates in its biosynthetic pathway, E- and Z-ascladiol, are not toxic to human cells

  • Joanna Tannous
  • Selma P. Snini
  • Rhoda El Khoury
  • Cécile Canlet
  • Philippe Pinton
  • Yannick Lippi
  • Imourana Alassane-Kpembi
  • Thierry Gauthier
  • André El Khoury
  • Ali Atoui
  • Ting Zhou
  • Roger Lteif
  • Isabelle P. Oswald
  • Olivier Puel
Biologics

Abstract

Patulin is the main mycotoxin contaminating apples. During the brewing of alcoholic beverages, this mycotoxin is degraded to ascladiol, which is also the last precursor of patulin. The present study aims (1) to characterize the last step of the patulin biosynthetic pathway and (2) to describe the toxicity of ascladiol. A patE deletion mutant was generated in Penicillium expansum. In contrast to the wild strain, this mutant does not produce patulin but accumulates high levels of E-ascladiol with few traces of Z-ascladiol. This confirms that patE encodes the patulin synthase involved in the conversion of E-ascladiol to patulin. After purification, cytotoxicities of patulin and E- and Z-ascladiol were investigated on human cell lines from liver, kidney, intestine, and immune system. Patulin was cytotoxic for these four cell lines in a dose-dependent manner. By contrast, both E- and Z-ascladiol were devoid of cytotoxicity. Microarray analyses on human intestinal cells treated with patulin and E-ascladiol showed that the latter, unlike patulin, did not alter the whole human transcription. These results demonstrate that E- and Z-ascladiol are not toxic and therefore patulin detoxification strategies leading to the accumulation of ascladiol are good approaches to limit the patulin risk.

Keywords

Ascladiol Patulin synthase Penicillium expansum patE gene Cytotoxicity Microarray analysis 

Supplementary material

204_2016_1900_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2233 kb)

References

  1. Alberts JF, Engelbrecht Y, Steyn PS, Holzapfel WH, van Zyl WH (2006) Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int J Food Microbiol 109:121–126CrossRefPubMedGoogle Scholar
  2. Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Tadrist S, Oswald IP, Puel O (2009) Molecular cloning and functional characterization of two CYP619 cytochrome P450 s involved in biosynthesis of patulin in Aspergillus clavatus. Microbiology 155:1738–1747CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beck J, Ripka S, Siegner A, Schiltz E, Schweizer E (1990) The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem 192:487–498CrossRefPubMedGoogle Scholar
  4. Caiazzo R, Kim YK, Xiao CL (2014) Occurrence and phenotypes of pyrimethanil resistance in Penicillium expansum from apple in Washington state. Plant Dis 98:924–928CrossRefGoogle Scholar
  5. Castoria R, Mannina L, Duran-Patron R, Maffei F, Sobolev AP, De Felice DV, Pinedo-Rivilla C, Ritieni A, Ferracane R, Wright SA (2011) Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. J Agric Food Chem 59:11571–11578CrossRefPubMedGoogle Scholar
  6. Devi P, Naik CG, Rodrigues C (2006) Biotransformation of citrinin to decarboxycitrinin using an organic solvent-tolerant marine bacterium, Moraxella sp. MB1. Mar Biotechnol 8:129–138CrossRefPubMedGoogle Scholar
  7. Dijkman WP, Fraaije MW (2014) Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Appl Environ Microbiol 80:1082–1090CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dong X, Jiang W, Li C, Ma N, Xu Y, Meng X (2015) Patulin biodegradation by marine yeast Kodameae ohmeri. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:352–360PubMedGoogle Scholar
  9. El-Sharkaway SH, Selim MI, Afifi MS, Halaweish FT (1991) Microbial transformation of zearalenone to a zearalenone sulfate. Appl Environ Microbiol 57:549–552PubMedPubMedCentralGoogle Scholar
  10. Errampalli D, Brubacher NR, DeEll JR (2006) Sensitivity of Penicillium expansum to diphenylamine and thiabendazole and postharvest control of blue mold with fludioxonil in ‘McIntosh’ apples. Postharvest Biol Technol 39:101–107CrossRefGoogle Scholar
  11. Etxebeste O, Herrero-García E, Cortese MS, Garzia A, Oiartzabal-Arano E, De los Ríos V, Ugalde U, Espeso EA (2012) GmcA is a putative glucose–methanol–choline oxidoreductase required for the induction of asexual development in Aspergillus nidulans. PLoS ONE 7:e40292CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fliege R, Metzler M (2000a) Electrophilic properties of patulin. Adduct structures and reaction pathways with 4-bromothiophenol and other model nucleophiles. Chem Res Toxicol 13:363–372CrossRefPubMedGoogle Scholar
  13. Fliege R, Metzler M (2000b) Electrophilic properties of patulin. N-acetylcysteine and glutathione adducts. Chem Res Toxicol 13:373–381CrossRefPubMedGoogle Scholar
  14. Glaser N, Stopper H (2012) Patulin: mechanism of genotoxicity. Food Chem Toxicol 50:1796–1801CrossRefPubMedGoogle Scholar
  15. Ianiri G, Idnurm A, Wright SA, Duran-Patron R, Mannina L, Ferracane R, Ritieni A, Castoria R (2013) Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl Environ Microbiol 79:3101–3115CrossRefPubMedPubMedCentralGoogle Scholar
  16. IARC (1986) Some naturally occuring and synthetic food components, furocoumarins and ultraviolet radiation. IARC Monogr Eval Carcinog Risks Hum 40:83–98Google Scholar
  17. JECFA (1995) Evaluation of certain food additives and contaminants. Forty-fourth report of the joint FAO/WHO expert committee on food additives. WHO Tech Rep Ser 859:36–38Google Scholar
  18. Kawauchiya T, Takumi R, Kudo Y, Takamori A, Sasagawa T, Takahashi K, Kikuchi H (2011) Correlation between the destruction of tight junction by patulin treatment and increase of phosphorylation of ZO-1 in Caco-2 human colon cancer cells. Toxicol Lett 205:196–202CrossRefPubMedGoogle Scholar
  19. Li H, Xiao C (2008) Characterization of fludioxonil-resistant and pyrimethanil-resistant phenotypes of Penicillium expansum from apple. Phytopathology 98:427–435CrossRefPubMedGoogle Scholar
  20. Mahfoud R, Maresca M, Garmy N, Fantini J (2002) The mycotoxin patulin alters the barrier function of the intestinal epithelium: mechanism of action of the toxin and protective effects of glutathione. Toxicol Appl Pharmacol 181:209–218CrossRefPubMedGoogle Scholar
  21. Maidana L, Gerez JR, El Khoury R, Pinho F, Puel O, Oswald IP, Bracarense AP (2016) Effects of patulin and ascladiol on porcine intestinal mucosa: an ex vivo approach. Food Chem Toxicol. doi:10.1016/j.fct.2016.10.001 PubMedGoogle Scholar
  22. McLaughlin J, Lambert D, Padfield PJ, Burt JP, O’Neill CA (2009) The mycotoxin patulin, modulates tight junctions in caco-2 cells. Toxicol In Vitro 23:83–89CrossRefPubMedGoogle Scholar
  23. Merhej J, Richard-Forget F, Barreau C (2011) The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet Biol 48:275–284CrossRefPubMedGoogle Scholar
  24. Morales H, Sanchis V, Coromines J, Ramos AJ, Marin S (2008) Inoculum size and intraspecific interactions affects Penicillium expansum growth and patulin accumulation in apples. Food Microbiol 25:378–385CrossRefPubMedGoogle Scholar
  25. Moss MO, Long MT (2002) Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit Contam 19:387–399CrossRefPubMedGoogle Scholar
  26. Pierron A, Mimoun S, Murate LS, Loiseau N, Lippi Y, Bracarense A-PF, Liaubet L, Schatzmayr G, Berthiller F, Moll W-D (2016) Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-d-glucoside. Arch Toxicol 90:2037–2046CrossRefPubMedGoogle Scholar
  27. Puel O, Tadrist S, Galtier P, Oswald IP, Delaforge M (2005) Byssochlamys nivea as a source of mycophenolic acid. Appl Environ Microbiol 71:550–553CrossRefPubMedPubMedCentralGoogle Scholar
  28. Puel O, Galtier P, Oswald IP (2010) Biosynthesis and toxicological effects of patulin. Toxins 2:613–631CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ricelli A, Baruzzi F, Solfrizzo M, Morea M, Fanizzi FP (2007) Biotransformation of patulin by Gluconobacter oxydans. Appl Environ Microbiol 73:785–792CrossRefPubMedGoogle Scholar
  30. Sekiguchi J, Shimamoto T, Yamada Y, Gaucher GM (1983) Patulin biosynthesis: enzymatic and nonenzymatic transformations of the mycotoxin (E)-ascladiol. Appl Environ Microbiol 45:1939–1942PubMedPubMedCentralGoogle Scholar
  31. Shao S, Zhou T, McGarvey BD (2012) Comparative metabolomic analysis of Saccharomyces cerevisiae during the degradation of patulin using gas chromatography-mass spectrometry. Appl Microbiol Biotechnol 94:789–797CrossRefPubMedGoogle Scholar
  32. Shoemaker RH, Curt GA, Carney DN (1983) Evidence for multidrug-resistant cells in human tumor cell populations. Cancer Treat Rep 67:883–888PubMedGoogle Scholar
  33. Silva JC, Minto RE, Barry CE, Holland KA, Townsend CA (1996) Isolation and characterization of the versicolorin B synthase gene from Aspergillus parasiticus. Expansion of the aflatoxin b1 biosynthetic gene cluster. J Biol Chem 271:13600–13608CrossRefPubMedGoogle Scholar
  34. Snini SP, Tadrist S, Laffitte J, Jamin EL, Oswald IP, Puel O (2014) The gene PatG involved in the biosynthesis pathway of patulin, a food-borne mycotoxin, encodes a 6-methylsalicylic acid decarboxylase. Int J Food Microbiol 171:77–83CrossRefPubMedGoogle Scholar
  35. Snini SP, Tannous J, Heuillard P, Bailly S, Lippi Y, Zehraoui E, Barreau C, Oswald IP, Puel O (2016) Patulin is a cultivar-dependent aggressiveness factor favoring the colonization of apples by Penicillium expansum. Mol Plant Pathol 17:920–930CrossRefPubMedGoogle Scholar
  36. Steyn PS (1991) The biosynthesis of polyketide-derived mycotoxins. J Environ Pathol Toxicol Oncol 11:47–59Google Scholar
  37. Suzuki T, Takeda M, Tanabe H (1971) A new mycotoxin produced by Aspergillus clavatus. Chem Pharm Bull 19:1786–1788CrossRefPubMedGoogle Scholar
  38. Tannous J, El Khoury R, Snini SP, Lippi Y, El Khoury A, Atoui A, Lteif R, Oswald IP, Puel O (2014) Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum. Int J Food Microbiol 189:51–60CrossRefPubMedGoogle Scholar
  39. Wright SAI, Ianiri DVG, Felice D, Castoria R, Berolini P (2007) A rapid assay for patulin degradation by the basidiomycetous yeast Rhodotorula glutinis strain LS11. In: Novel approaches for the control of postharvest diseases and disorders. Proceedings of the International Congress. Bologna, ItalyGoogle Scholar
  40. Wu TS, Liao YC, Yu FY, Chang CH, Liu BH (2008) Mechanism of patulin-induced apoptosis in human leukemia cells (HL-60). Toxicol Lett 183:105–111CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joanna Tannous
    • 1
    • 2
    • 3
  • Selma P. Snini
    • 1
    • 2
  • Rhoda El Khoury
    • 1
    • 2
    • 3
  • Cécile Canlet
    • 1
    • 2
  • Philippe Pinton
    • 1
    • 2
  • Yannick Lippi
    • 1
    • 2
  • Imourana Alassane-Kpembi
    • 1
    • 2
  • Thierry Gauthier
    • 1
    • 2
  • André El Khoury
    • 3
  • Ali Atoui
    • 4
    • 5
  • Ting Zhou
    • 6
  • Roger Lteif
    • 3
  • Isabelle P. Oswald
    • 1
    • 2
  • Olivier Puel
    • 1
    • 2
    • 7
  1. 1.Toxalim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPSUniversité de ToulouseToulouseFrance
  2. 2.ENVT, INP, UMR 1331, ToxalimUniversité de Toulouse IIIToulouseFrance
  3. 3.Centre d’Analyses et de Recherches (Faculté des Sciences)Université Saint-JosephBeirutLebanon
  4. 4.Laboratory of Microorganisms and Food IrradiationLebanese Atomic Energy Commission-CNRSBeirutLebanon
  5. 5.Laboratory of Microbiology, Department of Biology, Faculty of SciencesLebanese UniversityBeirutLebanon
  6. 6.Guelph Research and Development CenterAgriculture and Agri-Food CanadaGuelphCanada
  7. 7.INRA, UMR 1331 TOXALIMToulouseFrance

Personalised recommendations