Skip to main content

Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity

An Erratum to this article was published on 27 February 2017

Abstract

Pannexins constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The presence of pannexin1 in the liver has been documented previously, where it underlies inflammatory responses, such as those occurring upon ischemia–reperfusion injury. In the present study, we investigated whether pannexin1 plays a role in acute drug-induced liver toxicity. Hepatic expression of pannexin1 was characterized in a mouse model of acetaminophen-induced hepatotoxicity. Subsequently, mice were overdosed with acetaminophen followed by treatment with the pannexin1 channel inhibitor 10Panx1. Sampling was performed 1, 3, 6, 24 and 48 h after acetaminophen administration. Evaluation of the effects of pannexin1 channel inhibition was based on a number of clinically relevant readouts, including protein adduct formation, measurement of aminotransferase activity and histopathological examination of liver tissue as well as on a series of markers of inflammation, oxidative stress and regeneration. Although no significant differences were found in histopathological analysis, pannexin1 channel inhibition reduced serum levels of alanine and aspartate aminotransferase. This was paralleled by a reduced amount of neutrophils recruited to the liver. Furthermore, alterations in the oxidized status were noticed with upregulation of glutathione levels upon suppression of pannexin1 channel opening. Concomitant promotion of regenerative activity was detected as judged on increased proliferating cell nuclear antigen protein quantities in 10Panx1-treated mice. Pannexin1 channels are important actors in liver injury triggered by acetaminophen. Inhibition of pannexin1 channel opening could represent a novel approach for the treatment of drug-induced hepatotoxicity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

ALT:

Alanine aminotransferase

ANOVA:

Analysis of variance

APAP:

Acetaminophen

ASC:

Apoptosis-associated speck-like protein containing a C-terminal caspase-recruitment domain

AST:

Aspartate aminotransferase

ATP:

Adenosine triphosphate

Casp1:

Caspase1

CD:

Cluster of differentiation

ELISA:

Enzyme-linked immunosorbent assay

Gly:

Glycosylated

GSH:

Glutathione

GSSG:

Glutathione disulfide

IFNγ:

Interferon γ

IL-1β/6/10/18:

Interleukin 1β/6/10/18

n :

Number of repeats

Nalp3:

NACHT, LRR, and pyrin domain-containing protein 3

NAPQI:

N-acetyl-p-benzoquinone imine

p :

Probability

Panx:

Pannexin

PCNA:

Proliferating cell nuclear antigen

RT-qPCR:

Reverse transcription quantitative real-time polymerase chain reaction

SEM:

Standard error of the mean

TBS/T:

Tris-buffered saline solution containing 0.1% Tween-20

TNFα:

Tumor necrosis factor α

References

  1. Antoine DJ et al (2009) High-mobility group box-1 protein and keratin-18, circulating serum proteins informative of acetaminophen-induced necrosis and apoptosis in vivo. Toxicol Sci 112:521–531

    CAS  Article  PubMed  Google Scholar 

  2. Bajt ML, Lawson JA, Vonderfecht SL, Gujral JS, Jaeschke H (2000) Protection against Fas receptor-mediated apoptosis in hepatocytes and nonparenchymal cells by a caspase-8 inhibitor in vivo: evidence for a postmitochondrial processing of caspase-8. Toxicol Sci 58:109–117

    CAS  Article  PubMed  Google Scholar 

  3. Bajt ML, Knight TR, Farhood A, Jaeschke H (2003) Scavenging peroxynitrite with glutathione promotes regeneration and enhances survival during acetaminophen-induced liver injury in mice. J Pharmacol Exp Ther 307:67–73

    CAS  Article  PubMed  Google Scholar 

  4. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    CAS  Article  PubMed  Google Scholar 

  5. Bao Y, Chen Y, Ledderose C, Li L, Junger WG (2013) Pannexin 1 channels link chemoattractant receptor signaling to local excitation and global inhibition responses at the front and back of polarized neutrophils. J Biol Chem 288:22650–22657

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Blazka ME, Wilmer JL, Holladay SD, Wilson RE, Luster MI (1995) Role of proinflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 133:43–52

    CAS  Article  PubMed  Google Scholar 

  7. Boassa D, Ambrosi C, Qiu F, Dahl G, Gaietta G, Sosinsky G (2007) Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 282:31733–31743

    CAS  Article  PubMed  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  PubMed  Google Scholar 

  9. Brough D, Pelegrin P, Rothwell NJ (2009) Pannexin-1-dependent caspase-1 activation and secretion of IL-1beta is regulated by zinc. Eur J Immunol 39:352–358

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Celetti SJ, Cowan KN, Penuela S, Shao Q, Churko J, Laird DW (2010) Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J Cell Sci 123:1363–1372

    CAS  Article  PubMed  Google Scholar 

  12. Chekeni FB et al (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–867

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Cisneros-Mejorado A et al (2015) Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage. J Cereb Blood Flow Metab 35:843–850

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Connolly MK et al (2011) Dendritic cell depletion exacerbates acetaminophen hepatotoxicity. Hepatology 54:959–968

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Cover C, Liu J, Farhood A, Malle E, Waalkes MP, Bajt ML, Jaeschke H (2006) Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 216:98–107

    CAS  Article  PubMed  Google Scholar 

  16. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G (2011) Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54:133–144

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Dahlin DC, Miwa GT, Lu AY, Nelson SD (1984) N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 81:1327–1331

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Elliott MR et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Ganz M, Csak T, Nath B, Szabo G (2011) Lipopolysaccharide induces and activates the Nalp3 inflammasome in the liver. World J Gastroenterol 17:4772–4778

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H (2002) Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci 67:322–328

    CAS  Article  PubMed  Google Scholar 

  21. Gulbransen BD et al (2012) Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18:600–604

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Ichai P, Samuel D (2011) Epidemiology of liver failure. Clin Res Hepatol Gastroenterol 35:610–617

    Article  PubMed  Google Scholar 

  23. Imaeda AB et al (2009) Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest 119:305–314

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishida Y, Kondo T, Ohshima T, Fujiwara H, Iwakura Y, Mukaida N (2002) A pivotal involvement of IFN-gamma in the pathogenesis of acetaminophen-induced acute liver injury. FASEB J 16:1227–1236

    CAS  Article  PubMed  Google Scholar 

  25. Ishida Y, Kondo T, Kimura A, Tsuneyama K, Takayasu T, Mukaida N (2006) Opposite roles of neutrophils and macrophages in the pathogenesis of acetaminophen-induced acute liver injury. Eur J Immunol 36:1028–1038

    CAS  Article  PubMed  Google Scholar 

  26. Iwamoto T, Nakamura T, Doyle A, Ishikawa M, de Vega S, Fukumoto S, Yamada Y (2010) Pannexin 3 regulates intracellular ATP/cAMP levels and promotes chondrocyte differentiation. J Biol Chem 285:18948–18958

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Jaeschke H (1990) Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol. J Pharmacol Exp Ther 255:935–941

    CAS  PubMed  Google Scholar 

  28. Jaeschke H, Mitchell JR (1990) Use of isolated perfused organs in hypoxia and ischemia/reperfusion oxidant stress. Methods Enzymol 186:752–759

    CAS  Article  PubMed  Google Scholar 

  29. Jaeschke H, Williams CD, Ramachandran A, Bajt ML (2012) Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 32:8–20

    CAS  Article  PubMed  Google Scholar 

  30. James LP, Kurten RC, Lamps LW, McCullough S, Hinson JA (2005) Tumour necrosis factor receptor 1 and hepatocyte regeneration in acetaminophen toxicity: a kinetic study of proliferating cell nuclear antigen and cytokine expression. Basic Clin Pharmacol Toxicol 97:8–14

    CAS  Article  PubMed  Google Scholar 

  31. Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 187:195–202

    CAS  PubMed  Google Scholar 

  32. Kim HY, Kim SJ, Lee SM (2015) Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion. FEBS J 282:259–270

    CAS  Article  PubMed  Google Scholar 

  33. Knight TR, Kurtz A, Bajt ML, Hinson JA, Jaeschke H (2001) Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol Sci 62:212–220

    CAS  Article  PubMed  Google Scholar 

  34. Lawson JA, Farhood A, Hopper RD, Bajt ML, Jaeschke H (2000) The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol Sci 54:509–516

    CAS  Article  PubMed  Google Scholar 

  35. Le Vasseur M, Lelowski J, Bechberger JF, Sin WC, Naus CC (2014) Pannexin 2 protein expression is not restricted to the CNS. Front Cell Neurosci 8:392

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee WM (2008) Etiologies of acute liver failure. Semin Liver Dis 28:142–152

    Article  PubMed  Google Scholar 

  37. Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, Gonzalez FJ (1996) Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 271:12063–12067

    CAS  Article  PubMed  Google Scholar 

  38. Liu ZX, Han D, Gunawan B, Kaplowitz N (2006) Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 43:1220–1230

    CAS  Article  PubMed  Google Scholar 

  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC method. Methods 25:402–408

    CAS  Article  PubMed  Google Scholar 

  40. Maes M et al (2016a) Involvement of connexin43 in acetaminophen-induced liver injury. Biochim Biophys Acta 1862:1111–1121

    CAS  Article  PubMed  Google Scholar 

  41. Maes M et al (2016b) Connexin32: a mediator of acetaminophen-induced liver injury? Toxicol Mech Methods 26:88–96

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Maes M, Vinken M, Jaeschke H (2016c) Experimental models of hepatotoxicity related to acute liver failure. Toxicol Appl Pharmacol 290:86–97

    CAS  Article  PubMed  Google Scholar 

  43. Marina-García N, Franchi L, Kim YG, Miller D, McDonald C, Boons GJ, Núñez G (2008) Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol 180:4050–4057

    Article  PubMed  Google Scholar 

  44. Marques PE et al (2012) Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56:1971–1982

    CAS  Article  PubMed  Google Scholar 

  45. Martin-Murphy BV, Holt MP, Ju C (2010) The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice. Toxicol Lett 192:387–394

    CAS  Article  PubMed  Google Scholar 

  46. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    CAS  Article  PubMed  Google Scholar 

  47. McGill MR et al (2013) Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: dose-response, mechanisms, and clinical implications. Toxicol Appl Pharmacol 269:240–249

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Mehendale HM (2005) Tissue repair: an important determinant of final outcome of toxicant-induced injury. Toxicol Pathol 33:41–51

    CAS  Article  PubMed  Google Scholar 

  49. Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 187:185–194

    CAS  PubMed  Google Scholar 

  50. Muldrew KL, James LP, Coop L, McCullough SS, Hendrickson HP, Hinson JA, Mayeux PR (2002) Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection. Drug Metabol Dispos 30:446–451

    CAS  Article  Google Scholar 

  51. Mylvaganam S et al (2010) Hippocampal seizures alter the expression of the pannexin and connexin transcriptome. J Neurochem 112:92–102

    CAS  Article  PubMed  Google Scholar 

  52. Orellana JA et al (2011a) ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 118:826–840

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Orellana JA et al (2011b) Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31:4962–4977

    CAS  Article  PubMed  Google Scholar 

  54. Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10:473–474

    Article  Google Scholar 

  55. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180:7147–7157

    CAS  Article  PubMed  Google Scholar 

  57. Penuela S et al (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120:3772–3783

    CAS  Article  PubMed  Google Scholar 

  58. Penuela S, Bhalla R, Nag K, Laird DW (2009) Glycosylation regulates pannexin intermixing and cellular localization. Mol Biol Cell 20:4313–4323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Penuela S, Gehi R, Laird DW (2013) The biochemistry and function of pannexin channels. Biochim Biophys Acta 1828:15–22

    CAS  Article  PubMed  Google Scholar 

  60. Qu Y et al (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol 186:6553–6561

    CAS  Article  PubMed  Google Scholar 

  61. Sáez PJ, Shoji KF, Aguirre A, Sáez JC (2014) Regulation of hemichannels and gap junction channels by cytokines in antigen-presenting cells. Mediat Inflamm 2014:742734

    Article  Google Scholar 

  62. Sandilos JK, Chiu YH, Chekeni FB, Armstrong AJ, Walk SF, Ravichandran KS, Bayliss DA (2012) Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J Biol Chem 287:11303–11311

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Silverman WR et al (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284:18143–18151

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Swayne LA, Sorbara CD, Bennett SA (2010) Pannexin 2 is expressed by postnatal hippocampal neural progenitors and modulates neuronal commitment. J Biol Chem 285:24977–24986

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Thompson RJ et al (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322:1555–1559

    CAS  Article  PubMed  Google Scholar 

  66. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang N et al (2013) Paracrine signaling through plasma membrane hemichannels. Biochim Biophys Acta 1828:35–50

    CAS  Article  PubMed  Google Scholar 

  68. Williams CD, Bajt ML, Farhood A, Jaeschke H (2010a) Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver Int 30:1280–1292

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Williams CD, Farhood A, Jaeschke H (2010b) Role of caspase-1 and interleukin-1beta in acetaminophen-induced hepatic inflammation and liver injury. Toxicol Appl Pharmacol 247:169–178

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Williams CD et al (2011) Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury. Toxicol Appl Pharmacol 252:289–297

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A, Jaeschke H (2014) Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol Appl Pharmacol 275:122–133

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Xiao F, Waldrop SL, Khimji AK, Kilic G (2012) Pannexin1 contributes to pathophysiological ATP release in lipoapoptosis induced by saturated free fatty acids in liver cells. Am J Physiol Cell Physiol 303:1034–1044

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the grants of the Agency for Innovation by Science and Technology in Flanders (IWT Grant 131003), the European Research Council (ERC Starting Grant 335476), the Fund for Scientific Research-Flanders (FWO Grants G009514N and G010214N), the University Hospital of the Vrije Universiteit Brussel-Belgium (“Willy Gepts Fonds” UZ-VUB), the University of São Paulo-Brazil, the Foundation for Research Support of the State of São Paulo (FAPESP SPEC grant 2013/50420-6) and the National Institutes of Health (NIH Grants DK102142 and P20 GM103549). The authors wish to thank Miss Tineke Vanhalewyn, Miss Dinja De Win, Miss Shirlei Meire da Silva, Miss Cintia Maria Monteiro de Araújo, Dr. André G. Oliveira, Dr. Pedro E. Marques, Dr. Gustavo B. Menezes, Mister José Alexandre Coelho Pimental and Mister Paul Claes for their dedicated technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mathieu Vinken.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Bruno Cogliati and Mathieu Vinken share equal seniorship.

An erratum to this article is available at http://dx.doi.org/10.1007/s00204-016-1929-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 532 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maes, M., McGill, M.R., da Silva, T.C. et al. Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol 91, 2245–2261 (2017). https://doi.org/10.1007/s00204-016-1885-6

Download citation

Keywords

  • Pannexin
  • Hepatotoxicity
  • Acetaminophen
  • Cell death
  • Inflammation
  • Neutrophil