Skip to main content

Self-assembled 3D spheroids and hollow-fibre bioreactors improve MSC-derived hepatocyte-like cell maturation in vitro

Abstract

3D cultures of human stem cell-derived hepatocyte-like cells (HLCs) have emerged as promising models for short- and long-term maintenance of hepatocyte phenotype in vitro cultures by better resembling the in vivo environment of the liver and consequently increase the translational value of the resulting data. In this study, the first stage of hepatic differentiation of human neonatal mesenchymal stem cells (hnMSCs) was performed in 2D monolayer cultures for 17 days. The second stage was performed by either maintaining cells in 2D cultures for an extra 10 days, as control, or alternatively cultured in 3D as self-assembled spheroids or in multicompartment membrane bioreactor system. All systems enabled hnMSC differentiation into HLCs as shown by positive immune staining of hepatic markers CK-18, HNF-4α, albumin, the hepatic transporters OATP-C and MRP-2 as well as drug-metabolizing enzymes like CYP1A2 and CYP3A4. Similarly, all models also displayed relevant glucose, phase I and phase II metabolism, the ability to produce albumin and to convert ammonia into urea. However, EROD activity and urea production were increased in both 3D systems. Moreover, the spheroids revealed higher bupropion conversion, whereas bioreactor showed increased albumin production and capacity to biotransform diclofenac. Additionally, diclofenac resulted in an IC50 value of 1.51 ± 0.05 and 0.98 ± 0.03 in 2D and spheroid cultures, respectively. These data suggest that the 3D models tested improved HLC maturation showing a relevant biotransformation capacity and thus provide more appropriate reliable models for mechanistic studies and more predictive systems for in vitro toxicology applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

3-MC:

Methylcholanthrene

5-AZA:

5-Azacytidine

AFP:

Alpha-fetoprotein

ALB:

Albumin

c/EBPα:

CCAAT/enhancer-binding protein

CK:

Cytokeratin

CYP:

Cytochrome P-450

DAPI:

4′,6-Diamidino-2-phenylindole

DMSO:

Dimethyl sulphoxide

ECM:

Extracellular matrix

EROD:

7-Ethoxyresorufin-O-deethylase assay

FGF:

Fibroblast growth factor

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HbLCs:

Hepatoblast-like cells

hESCs:

Human embryonic stem cells

HGF:

Hepatocyte growth factor

HLCs:

Hepatocyte-like cells

HNF-4α:

Hepatocyte nuclear factor-4α

hnMSCs:

Human neonatal mesenchymal stem cells

hpHep:

Human primary hepatocytes

iPSCs:

Induced pluripotent stem cells

LDH:

Lactate dehydrogenase

MRP-2:

Multidrug resistance protein 2

MSCs:

Mesenchymal stem cells

MTS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium, inner salt

OATP-C:

Organic anion-transporting polypeptide C

OSM:

Oncostatin M

SC:

Stem cell

PAS:

Periodic acid Schiff’s staining

TAT:

Tyrosine aminotransferase

UCX® :

ECBio’s proprietary Umbilical Cord eXpanded hnMSCs isolated from the Wharton’s Jelly

UGT:

Uridine 5′-diphosphate glucuronosyltransferase

References

  • Boelsterli UA (2003) Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol Appl Pharmacol 192(3):307–322. doi:10.1016/s0041-008x(03)00368-5

    CAS  Article  PubMed  Google Scholar 

  • Bort R, Ponsoda X, Jover R, Gómez-Lechón MJ, Castell JV (1999) Diclofenac toxicity to hepatocytes: a role for drug metabolism in cell toxicity. The J Pharmacol Exp Ther 288(1):65–72

    CAS  PubMed  Google Scholar 

  • Campard D, Lysy PA, Najimi M, Sokal EM (2008) Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 134(3):833–848. doi:10.1053/j.gastro.2007.12.024

    CAS  Article  PubMed  Google Scholar 

  • Cipriano M, Medeiros A, Filipe E et al (2014) 2014) UCX (R) cells: a primordial stem cell source for in vitro differentiation into hepatocyte-like cells (HLCs. Toxicol Lett 229:S140–S140. doi:10.1016/J.Toxlet.2014.06.492

    Google Scholar 

  • Fausto N (2004) Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39(6):1477–1487. doi:10.1002/hep.20214

    Article  PubMed  Google Scholar 

  • Gerets HH, Tilmant K, Gerin B et al (2012) Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 28(2):69–87. doi:10.1007/s10565-011-9208-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Gieseck RL 3rd, Hannan NR, Bort R et al (2014) Maturation of induced pluripotent stem cell derived hepatocytes by 3D-culture. PLoS One 9(1):e86372. doi:10.1371/journal.pone.0086372

    Article  PubMed  Google Scholar 

  • Godoy P, Hewitt NJ, Albrecht U et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530. doi:10.1007/s00204-013-1078-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Guguen-Guillouzo C, Corlu A, Guillouzo A (2010) Stem cell-derived hepatocytes and their use in toxicology. Toxicology 270(1):3–9. doi:10.1016/j.tox.2009.09.019

    CAS  Article  PubMed  Google Scholar 

  • Hamilton GA, Jolley SL, Gilbert D, Coon DJ, Barros S, LeCluyse EL (2001) Regulation of cell morphology and cytochrome P450 expression in human hepatocytes by extracellular matrix and cell-cell interactions. Cell Tissue Res 306(1):85–99. doi:10.1007/s004410100429

    CAS  Article  PubMed  Google Scholar 

  • Haruna Y, Saito K, Spaulding S, Nalesnik MA, Gerber MA (1996) Identification of bipotential progenitor cells in human liver development. Hepatology 23(3):476–481. doi:10.1002/hep.510230312

    CAS  Article  PubMed  Google Scholar 

  • Hoffmann SA, Müller-Vieira U, Biemel K et al (2012) Analysis of drug metabolism activities in a miniaturized liver cell bioreactor for use in pharmacological studies. Biotechnol Bioeng 109(12):3172–3181. doi:10.1002/bit.24573

    CAS  Article  PubMed  Google Scholar 

  • Kazemnejad S, Allameh A, Soleimani M et al (2009) Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol 24(2):278–287. doi:10.1111/j.1440-1746.2008.05530.x

    CAS  Article  PubMed  Google Scholar 

  • Knöspel F, Jacobs F, Freyer N et al (2016) In vitro model for hepatotoxicity studies based on primary human hepatocyte cultivation in a perfused 3D bioreactor system. Int J Mol Sci. doi:10.3390/ijms17040584

    PubMed  PubMed Central  Google Scholar 

  • Komashko VM, Farnham PJ (2010) 5-azacytidine treatment reorganizes genomic histone modification patterns. Epigenet Off J DNA Methylation Soc 5(3):229–240

    CAS  Article  Google Scholar 

  • Leite SB, Teixeira AP, Miranda JP et al (2011) Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: improved in vitro models for toxicological applications. Toxicol In Vitro 25(4):825–832. doi:10.1016/j.tiv.2011.02.002

    CAS  Article  PubMed  Google Scholar 

  • Lin J, Schyschka L, Muhl-Benninghaus R et al (2012) Comparative analysis of phase I and II enzyme activities in 5 hepatic cell lines identifies Huh-7 and HCC-T cells with the highest potential to study drug metabolism. Arch Toxicol 86(1):87–95. doi:10.1007/s00204-011-0733-y

    CAS  Article  PubMed  Google Scholar 

  • Lübberstedt M, Müller-Vieira U, Biemel KM et al (2012) Serum-free culture of primary human hepatocytes in a miniaturized hollow-fibre membrane bioreactor for pharmacological in vitro studies. J Tissue Eng Regen Med. doi:10.1002/term.1652

    PubMed  Google Scholar 

  • Miranda JP, Leite SB, Müller-Vieira U, Rodrigues A, Carrondo MJ, Alves PM (2009) Towards an extended functional hepatocyte in vitro culture. Tissue Eng Part C, Methods 15(2):157–167. doi:10.1089/ten.tec.2008.0352

    CAS  Article  Google Scholar 

  • Miranda JP, Rodrigues A, Tostoes RM et al (2010) Extending hepatocyte functionality for drug-testing applications using high-viscosity alginate-encapsulated three-dimensional cultures in bioreactors. Tissue Eng Part C, Methods 16(6):1223–1232. doi:10.1089/ten.TEC.2009.0784

    CAS  Article  Google Scholar 

  • Miranda JP, Filipe E, Fernandes AS et al (2015) The human umbilical cord tissue-derived MSC population UCX(R) promotes early motogenic effects on keratinocytes and fibroblasts and G-CSF-mediated mobilization of BM-MSCs when transplanted in vivo. Cell Transpl 24(5):865–877. doi:10.3727/096368913X676231

    Article  Google Scholar 

  • Müeller D, Tascher G, Müller-Vieira U et al (2011) In-depth physiological characterization of primary human hepatocytes in a 3D hollow-fiber bioreactor. J Tissue Eng Regen Med 5(8):e207–e218. doi:10.1002/term.418

    Article  PubMed  Google Scholar 

  • Okura H, Komoda H, Saga A et al (2010) Properties of hepatocyte-like cell clusters from human adipose tissue-derived mesenchymal stem cells. Tissue Eng Part C, Methods 16(4):761–770. doi:10.1089/ten.TEC.2009.0208

    CAS  Article  Google Scholar 

  • Ong SY, Dai H, Leong KW (2006) Inducing hepatic differentiation of human mesenchymal stem cells in pellet culture. Biomaterials 27(22):4087–4097. doi:10.1016/j.biomaterials.2006.03.022

    CAS  Article  PubMed  Google Scholar 

  • Paganelli M, Dallmeier K, Nyabi O et al (2013) Differentiated umbilical cord matrix stem cells as a new in vitro model to study early events during hepatitis B virus infection. Hepatology 57(1):59–69. doi:10.1002/hep.26006

    CAS  Article  PubMed  Google Scholar 

  • Pinheiro PF, Pereira SA, Harjivan SG et al (2016) Hepatocyte spheroids as a competent in vitro system for drug biotransformation studies: nevirapine as a bioactivation case study. Arch Toxicol. doi:10.1007/s00204-016-1792-x [Epub ahead of print]

    PubMed  Google Scholar 

  • Rajan N, Habermehl J, Cote MF, Doillon CJ, Mantovani D (2006) Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc 1(6):2753–2758. doi:10.1038/nprot.2006.430

    CAS  Article  PubMed  Google Scholar 

  • Ramasamy TS, Yu JS, Selden C, Hodgson H, Cui W (2013) Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality. Tissue Eng Part A 19(3–4):360–367. doi:10.1089/ten.tea.2012.0190

    CAS  Article  PubMed  Google Scholar 

  • Santos JM, Camões SP, Filipe E et al (2015) Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem cell Res Ther 6:90. doi:10.1186/s13287-015-0082-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz RE, Fleming HE, Khetani SR, Bhatia SN (2014) Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv 32(2):504–513. doi:10.1016/j.biotechadv.2014.01.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Seeliger C, Culmes M, Schyschka L et al (2013) Decrease of global methylation improves significantly hepatic differentiation of Ad-MSCs: possible future application for urea detoxification. Cell Transpl 22(1):119–131. doi:10.3727/096368912X638946

    CAS  Article  Google Scholar 

  • Sengupta S, Johnson BP, Swanson SA, Stewart R, Bradfield CA, Thomson JA (2014) Aggregate culture of human embryonic stem cell-derived hepatocytes in suspension are an improved in vitro model for drug metabolism and toxicity testing. Toxicol Sci Off J Soc Toxicol 140(1):236–245. doi:10.1093/toxsci/kfu069

    CAS  Article  Google Scholar 

  • Sivertsson L, Synnergren J, Jensen J, Bjorquist P, Ingelman-Sundberg M (2013) Hepatic differentiation and maturation of human embryonic stem cells cultured in a perfused three-dimensional bioreactor. Stem Cells Dev 22(4):581–594. doi:10.1089/scd.2012.0202

    CAS  Article  PubMed  Google Scholar 

  • Strassburg CP, Strassburg A, Kneip S et al (2002) Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut 50(2):259–265. doi:10.1136/gut.50.2.259

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian K, Owens DJ, Raju R et al (2014) Spheroid culture for enhanced differentiation of human embryonic stem cells to hepatocyte-like cells. Stem cells and development 23(2):124–131. doi:10.1089/scd.2013.0097

    CAS  Article  PubMed  Google Scholar 

  • Takayama K, Kawabata K, Nagamoto Y et al (2013) 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials 34(7):1781–1789. doi:10.1016/j.biomaterials.2012.11.029

    CAS  Article  PubMed  Google Scholar 

  • Talaei-Khozani T, Khodabandeh Z, Jaberipour M, Hosseini A, Bahmanpour S, Vojdani Z (2015) Comparison of hepatic nuclear factor-4 expression in two- and three-dimensional culture of Wharton’s jelly-derived cells exposed to hepatogenic medium. Rom J Morphol Embryol Rev Roum Morphol Embryol 56(4):1365–1370

    Google Scholar 

  • Tanimizu N, Mitaka T (2014) Re-evaluation of liver stem/progenitor cells. Organogenesis 10(2):208–215. doi:10.4161/org.27591

    Article  PubMed  PubMed Central  Google Scholar 

  • Tasnim F, Phan D, Toh YC, Yu H (2015) Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules. Biomaterials 70:115–125. doi:10.1016/j.biomaterials.2015.08.002

    CAS  Article  PubMed  Google Scholar 

  • Tostões RM, Leite SB, Miranda JP et al (2011) Perfusion of 3D encapsulated hepatocytes–a synergistic effect enhancing long-term functionality in bioreactors. Biotechnol Bioeng 108(1):41–49. doi:10.1002/bit.22920

    Article  PubMed  Google Scholar 

  • Woo DH, Kim SK, Lim HJ et al (2012) Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology 142(3):602–611. doi:10.1053/j.gastro.2011.11.030

    CAS  Article  PubMed  Google Scholar 

  • Xu J, Ma M, Purcell WM (2003) Characterisation of some cytotoxic endpoints using rat liver and HepG2 spheroids as in vitro models and their application in hepatotoxicity studies. II. Spheroid cell spreading inhibition as a new cytotoxic marker. Toxicol Appl Pharmacol 189(2):112–119. doi:10.1016/S0041-008X(03)00090-5

    CAS  Article  PubMed  Google Scholar 

  • Yoon HH, Jung BY, Seo YK, Song KY (2010) Park JK (2010) In vitro hepatic differentiation of umbilical cord-derived mesenchymal stem cell. Process Biochem 45(12):1857–1864. doi:10.1016/J.Procbio.2010.06.009

    CAS  Article  Google Scholar 

  • Yoshida Y, Shimomura T, Sakabe T et al (2007) A role of Wnt/beta-catenin signals in hepatic fate specification of human umbilical cord blood-derived mesenchymal stem cells. Am J Physiol Gastrointest Liver Physiol 293(5):G1089–G1098. doi:10.1152/ajpgi.00187.2007

    CAS  Article  PubMed  Google Scholar 

  • Zeilinger K, Schreiter T, Darnell M et al (2011) Scaling down of a clinical three-dimensional perfusion multicompartment hollow fiber liver bioreactor developed for extracorporeal liver support to an analytical scale device useful for hepatic pharmacological in vitro studies. Tissue Eng Part C, Methods 17(5):549–556. doi:10.1089/ten.TEC.2010.0580

    CAS  Article  Google Scholar 

  • Zhang YN, Lie PC, Wei X (2009) Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy 11(5):548–558. doi:10.1080/14653240903051533

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Pharmacelsus GmbH (Dr. Ursula Muller-Vieira) for the MS quantifications and analyses. We also acknowledge the support of the COST action BM1305 (A FACTT: Action to Focus and Accelerate Cell-based Tolerance-inducing Therapies). This work was supported by FCT (Fundação para a Ciência e a Tecnologia) [EXPL/DTP-FTO/0308/2013, PTDC/SAU-TOX/110457/2009, UID/DTP/04138/2013, SFRH/BPD/96719/2013 and Ciência2008 to JPM, SFRH/BD/87508/2012 to M. Cipriano]. The work herein presented was performed at iMed.ULisboa, ECBio S.A. and BCRT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana P. Miranda.

Ethics declarations

Human and animal rights statement

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 291 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cipriano, M., Freyer, N., Knöspel, F. et al. Self-assembled 3D spheroids and hollow-fibre bioreactors improve MSC-derived hepatocyte-like cell maturation in vitro. Arch Toxicol 91, 1815–1832 (2017). https://doi.org/10.1007/s00204-016-1838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1838-0

Keywords

  • Spheroids
  • Hollow-fibre bioreactor
  • Hepatocyte-like cells
  • Human neonatal mesenchymal stem cells
  • In vitro toxicology