Skip to main content

Advertisement

Log in

Non-dioxin-like organic toxicant PCB153 modulates sphingolipid metabolism in liver progenitor cells: its role in Cx43-formed gap junction impairment

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The non-dioxin-like environmental toxicant 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153), member of a group of persistent organic pollutants wide-spread throughout the environment, reduces gap junction intercellular communication (GJIC), an event possibly associated with tumor promotion. Since very few studies have investigated the signaling effectors and mode(s) of action of PCB153, and it is known that the gap junction (GJ) protein Cx43 can be regulated by the bioactive sphingolipid (SL) sphingosine 1-phosphate (S1P), this in vitro study mainly addresses whether SL metabolism is affected by PCB153 in rat liver epithelial WB-F344 cells. PCB153 treatment obtained significant changes in the S1P/ceramide (Cer) ratio, known to be crucial in determining cell fate. In particular, an increase in S1P at 30 min and a decrease of the bioactive lipid at 3 h were observed, whereas Cer level increased at 1 h and 24 h. Notably, a time-dependent modulation of sphingosine kinase (SphK), the enzyme responsible for S1P synthesis, and of its regulators, ERK1/2 and protein phosphatase PP2A, supports the involvement of these signaling effectors in PCB153 toxicity. Electrophysiological analyses, furthermore, indicated that the lipophilic environmental toxicant significantly reduced GJ biophysical properties, affecting both voltage-dependent (such as those formed by Cx43 and/or Cx32) and voltage-independent channels, thereby demonstrating that PCB153 may act differently on GJs formed by distinct Cx isoforms. SphK down-regulation alone induced GJIC impairment, and, when combined with PCB153, the acute effect on GJ suppression was additive. Moreover, after enzyme-specific gene silencing, the SphK1 isoform appears to be responsible for down-regulating Cx43 expression, while being the target of PCB153 at short-term exposure. In conclusion, we provide the first evidence of novel effectors in PCB153 toxic action in rat liver stem-like cells, leading us to consider SLs as potential markers for preventing GJIC deregulation and, thus, the tumorigenic action elicited by this environmental toxicant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrysík Z, Procházková J, Kabátková M, Umannová L, Šimečková P, Kohoutek J, Kozubík A, Machala M, Vondráček J (2013) Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication. Arch Toxicol 87:491–503

    Article  PubMed  Google Scholar 

  • Axelsen LN, Calloe K, Holstein-Rathlou NH, Nielsen MS (2013) Managing the complexity of communication: regulation of gap junctions by post-translational modification. Front Pharmacol 4:130–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Barr RK, Lynn HE, Moretti PA, Khew-Goodall Y, Pitson SM (2008) Deactivation of sphingosine kinase 1 by protein phosphatase 2A. J Biol Chem 283:34994–35002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum N, Ragolia L (1996) cAMP counter-regulates insulin-mediated protein phosphatase-2A inactivation in rat skeletal muscle cells. J Biol Chem 271:31166–31171

    Article  CAS  PubMed  Google Scholar 

  • Bini F et al (2012) New signaling pathway involved in the anti-proliferative action of vitamin D3 and its analogues in human neuroblastoma cells. A role for ceramide kinase. Neuropharmacology 63:524–537

    Article  CAS  PubMed  Google Scholar 

  • Brink PR et al (1997) Evidence for heteromeric gap junction channels formed from rat connexin 43 and human connexin 37. Am J Physiol Cell Physiol 273:C1386–C1396

    CAS  Google Scholar 

  • Canals D, Hannun YA (2013) Novel chemotherapeutic drugs in sphingolipid cancer research. Handb Exp Pharmacol 215:211–238

    Article  CAS  Google Scholar 

  • Chen HF et al. (2013) Role of a novel functional variant in the PPP2R1A promoter on the regulation of PP2A-Aalpha and the risk of hepatocellular carcinoma. PLoS ONE 8:e59574. doi:10.1371/journal.pone.0059574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davaille J, Li L, Mallat A, Lotersztajn S (2002) Sphingosine 1-phosphate triggers both apoptotic and survival signals for human hepatic myofibroblasts. J Biol Chem 277:37323–37330

    Article  CAS  PubMed  Google Scholar 

  • De P, Carlson J, Leyland-Jones B, Dey N (2014) Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): an oncoprotein with many hands. Oncotarget 5:4581–4602

    Article  PubMed  PubMed Central  Google Scholar 

  • Formigli et al (2005) Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favored by direct cell-cell contacts and relaxin treatment. Am J Physiol Cell Physiol 288:795–804

    Article  Google Scholar 

  • Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, Sbrana F, Zecchi S, Francini F, Meacci E (2009) Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. J Cell Sci 122:1322–1333

    Article  CAS  PubMed  Google Scholar 

  • Frati A, Ricci B, Pierucci F, Nistri S, Bani D, Meacci E (2015) Role of sphingosine kinase/S1P axis in ECM-remodeling of cardiac cells elicited by relaxin. Mol Endocrinol 29:53–67

    Article  PubMed  Google Scholar 

  • French KJ et al (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63:5962–5971

    CAS  PubMed  Google Scholar 

  • Fyrst H, Saba JD (2010) An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 6:489–497. Erratum: Nat Chem Biol 6:689–697

  • Glauert HP et al (2008) Role of oxidative stress in the promoting activities of PCBs. Toxicol Appl Pharmacol 232:302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzàlez D, Gòmez-Hernàndez JM, Barrio LC (2007) Molecular basis of voltage dependence of connexin channels: an integrative appraisal. Prog Biophys Mol Biol 94:66–106

    Article  PubMed  Google Scholar 

  • Grisham JW, Coleman WB, Smith GJ (1993) Isolation, culture, and transplantation of rat hepatocytic precursor (stem-like) cells. Proc Soc Exp Biol Med 204:270–279

    Article  CAS  PubMed  Google Scholar 

  • Hamers T et al (2011) In vitro toxicity profiling of ultrapure non-dioxin-like polychlorinated biphenyl congeners and their relative toxic contribution to PCB mixtures in humans. Toxicol Sci 121:88–100

    Article  CAS  PubMed  Google Scholar 

  • Huwiler A, Kotelevets N, Xin C, Pastukhov O, Pfeilschifter J, Zangemeister-Wittke U (2011) Loss of sphingosine kinase-1 in carcinoma cells increases formation of reactive oxygen species and sensitivity to doxorubicin-induced DNA damage. Br J Pharmacol 162:532–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda H et al (2000) Biological activities of novel lipid mediator sphingosine 1-phosphate in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 279:G304–G310

    CAS  PubMed  Google Scholar 

  • Kim JA, Kim Y, Kwon BM, Han DC (2013) The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and Bcl-2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters. J Biol Chem 288:28713–28726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klotz LO (2012) Posttranscriptional regulation of connexin-43 expression. Arch Biochem Biophys 524:23–29

    Article  CAS  PubMed  Google Scholar 

  • Lemaire G et al (2007) Discovery of a highly active ligand of human pregnane X receptor: a case study from pharmacophore modeling and virtual screening to “in vivo” biological activity. Mol Pharmacol 72:572–581

    Article  CAS  PubMed  Google Scholar 

  • Li W, Xie L, Chen Z, Zhu Y, Sun Y, Miao Y, Xu Z, Han X (2010) Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer Sci 101:1226–1233

    Article  CAS  PubMed  Google Scholar 

  • Ludewig G, Robertson LW (2013) Polychlorinated biphenyls (PCBs) as initiating agents in hepatocellular carcinoma. Cancer Lett 334:46–55. doi:10.1016/j.canlet.2012.11.041 (review)

    Article  CAS  PubMed  Google Scholar 

  • Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510:58–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22:50–60

    Article  CAS  PubMed  Google Scholar 

  • Machala M, Bláha L, Vondrácek J, Trosko JE, Scott J, Upham BL (2003) Inhibition of gap junctional intercellular communication by noncoplanar polychlorinated biphenyls: inhibitory potencies and screening for potential mode(s) of action. Toxicol Sci 76:102–111

    Article  CAS  PubMed  Google Scholar 

  • Marampon F et al (2011) MEK/ERK inhibitor U0126 increases the radiosensitivity of rhabdomyosarcoma cells in vitro and in vivo by downregulating growth and DNA repair signals. Mol Cancer Ther 10:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meacci E, Nuti F, Donati C, Cencetti F, Farnararo M, Bruni P (2008) Sphingosine kinase activity is required for myogenic differentiation of C2C12 myoblasts. J Cell Physiol 214:210–220

    Article  CAS  PubMed  Google Scholar 

  • Meacci E et al (2010) Functional interaction between TRPC1 channel and connexin-43 protein: a novel pathway underlying S1P action on skeletal myogenesis. Cell Mol Life Sci 67:4269–4285

    Article  CAS  PubMed  Google Scholar 

  • Nahta R et al (2015) Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis 36:S2–S18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naus CC, Laird DW (2010) Implications and challenges of connexin connections to cancer. Nat Rev Cancer 10:435–441

    Article  CAS  PubMed  Google Scholar 

  • Park WJ et al (2013) Protection of a ceramide synthase 2 null mouse from drug-induced liver injury: role of gap junction dysfunction and connexin 32 mislocalization. J Biol Chem 288:30904–30916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pchejetski D, Kunduzova O, Dayon A, Calise D, Seguelas MH, Leducq N, Seif I, Parini A, Cuvillier O (2007) Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 100:41–49

    Article  CAS  PubMed  Google Scholar 

  • Pitson SM, Dandrea RJ, Vandeleur L, Moretti PA, Xia P, Gamble JR, Vadas MA, Wattenberg BW (2000) Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. Biochem J 350(Pt 2):429–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA, Wattenberg BW (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22:5491–5500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenkranz H, Pollack N, Cunningham AR (2000) Exploring the relationship between the inhibition of gap junctional intercellular communication and other biological phenomena. Carcinogenesis 21:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Rouach N, Pébay A, Même W, Cordier J, Ezan P, Etienne E, Giaume C, Tencé M (2006) S1P inhibits gap junctions in astrocytes: involvement of G and Rho GTPase/ROCK. Eur J Neurosci 23:1453–1464

    Article  PubMed  Google Scholar 

  • Sassoli C, Frati A, Tani A, Anderloni G, Pierucci F, Matteini F, Chellini F, Zecchi S, Formigli L, Meacci E (2014) Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS ONE 9:e108662

    Article  PubMed  PubMed Central  Google Scholar 

  • Šimečková P, Vondráček J, Andrysík Z, Zatloukalová J, Kozubík A, Machala M (2009a) The 2,2′,4,4′,5,5′-hexachlorobiphenyl-enhanced degradation of connexin 43 involves both proteasomal and lysosomal activities. Toxicol Sci 107:9–18

    PubMed  Google Scholar 

  • Šimečková P, Vondráček J, Procházková J, Kozubík A, Krčmář P, Machala M (2009b) 2,2′,4,4′,5,5′-Hexachlorobiphenyl (PCB 153) induces degradation of adherens junction proteins and inhibits β-catenin-dependent transcription in liver epithelial cell. Toxicology 260:104–111

    Article  PubMed  Google Scholar 

  • Simon KW, Roberts PC, Vespremi MJ, Manchen S, Schmelz EM (2009) Regulation of beta-catenin and connexin-43 expression: targets for sphingolipids in colon cancer prevention. Mol Nutr Food Res 53:332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon KW, Tait L, Miller F, Cao C, Davy KP, LeRoith T, Schmelz EM (2010) Suppression of breast xenograft growth and progression in nude mice: implications for the use of orally administered sphingolipids as chemopreventive agents against breast cancer. Food Funct 1:90–98

    Article  CAS  PubMed  Google Scholar 

  • Solan JL, Lampe PD (2014) Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett 588:1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squecco R, Sassoli C, Nuti F, Martinesi M, Nosi D, Zecchi S, Francini F, Formigli L, Meacci E (2006) Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: role for a gap junction-dependent and independent function. Mol Biol Cell 17:4896–4910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squecco R, Garella R, Luciani G, Francini F, Baccari MC (2011) Muscular effects of orexin A on the mouse duodenum: mechanical and electrophysiological studies. J Physiol 589:5231–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsao MS, Smith JD, Nelson KG, Grisham JW (1984) A diploid epithelial cell line from normal adult rat liver with phenotypic properties of ‘oval’ cells. Exp Cell Res 154:38–52

    Article  CAS  PubMed  Google Scholar 

  • Valiunas V, Weingart R, Brink PR (2000) Formation of heterotypic gap junction channels by connexins 40 and 43. Circ Res 86:e42–e49

    Article  CAS  PubMed  Google Scholar 

  • Vinken M, Doktorova T, Decrock E, Leybaert L, Vanhaecke T, Rogiers V (2009) Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity. Crit Rev Biochem Mol Biol 44:201–222

    Article  CAS  PubMed  Google Scholar 

  • Vinken M et al (2012) Modifications in connexin expression in liver development and cancer. Cell Commun Adhes 19:55–62

    Article  CAS  PubMed  Google Scholar 

  • White TW, Bruzzone R, Goodenough DA, Paul DL (1994) Voltage gating of connexins. Nature 371:208–209

    Article  CAS  PubMed  Google Scholar 

  • Yum SW, Zhang J, Valiunas V, Kanaporis G, Brink PR, White TW, Scherer S (2007) Human connexin26 and connexin 30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol 293:C1032–C1048

    Article  CAS  PubMed  Google Scholar 

  • Zatloukalová J, Švihálková-Šindlerová L, Kozubík A, Krčmář P, Machala M, Vondráček J (2007) beta-Naphthoflavone and 3′-methoxy-4′-nitroflavone exert ambiguous effects on Ah receptor-dependent cell proliferation and gene expression in rat liver ‘stem-like’ cells. Biochem Pharmacol 73:1622–1634

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fondazione CARIPT to E.M., Regione Toscana to E.M. and MIUR to E.M. and the Czech Ministry of Agriculture (RO 0515) to J.S. and M.M. The authors are grateful to Dr. M. Martinesi from the Department of Biomedical Sciences, University of Florence, Italy, Drs J. Vondráček, P. Brenerová and K. Pěnčíková from the Veterinary Research Institute at Brno, Czech Republic, for their valuable contributions to the discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Meacci.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierucci, F., Frati, A., Squecco, R. et al. Non-dioxin-like organic toxicant PCB153 modulates sphingolipid metabolism in liver progenitor cells: its role in Cx43-formed gap junction impairment. Arch Toxicol 91, 749–760 (2017). https://doi.org/10.1007/s00204-016-1750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1750-7

Keywords

Navigation