Abstract
Chronic exposure to propiverine, a frequently prescribed pharmaceutical for treatment of overactive bladder and incontinence, provokes massive protein accumulation in the cytosol and nucleus of renal proximal tubule epithelial cells in rats. Previously, the accumulating protein was identified as d-amino acid oxidase (DAAO), a peroxisomal flavoenzyme expressed in kidney, liver and brain. The cellular mechanism of propiverine-induced DAAO accumulation, however, remains unexplained and poorly characterized. Therefore, to further increase the understanding of DAAO accumulation in rat kidney, this study aimed to characterize DAAO accumulations using differential immunofluorescent staining of rat kidney sections as well as in vitro binding analyses and proteasomal activity studies. We demonstrated that propiverine is neither a ligand of DAAO nor an inhibitor of the proteasome in vitro. However, propiverine treatment resulted in a significant decrease of peroxisomal size in rat proximal tubule epithelial cells. Moreover, peroxisomal catalase also accumulated in the cytosol and nuclei of propiverine-treated rats concurrently with DAAO. Taken together, our study indicates that propiverine treatment affects the trafficking and/or degradation of peroxisomal proteins such as DAAO and catalase by a so far unique and unknown mechanism.
This is a preview of subscription content, access via your institution.





Notes
http://thebiogrid.org/107980, 20.11.15.
Abbreviations
- Prop.:
-
Propiverine
- rDAAO:
-
Rat d-amino acid oxidase
- hDAAO:
-
Human d-amino acid oxidase
- mDAAO:
-
Mouse d-amino acid oxidase
- CD:
-
Circular dichroism
- BF:
-
Bright field
- ABCD3:
-
ATP-binding cassette subfamily D member
- LAMP2:
-
Lysosomal-associated membrane protein 2
References
Abrams P, Andersson K (2007) Muscarinic receptor antagonists for overactive bladder. BJU Int 100:987–1006. doi:10.1111/j.1464-410X.2007.07205.x
Ast J, Stiebler AC, Freitag J, Bölker M (2013) Dual targeting of peroxisomal proteins. Front Physiol 4:297. doi:10.3389/fphys.2013.00297
Borghoff SJ, Short BG, Swenberg JA (1990) Biochemical mechanisms and pathobiology of alpha 2u-globulin nephropathy. Annu Rev Pharmacol Toxicol 30:349–367. doi:10.1146/annurev.pa.30.040190.002025
Caldinelli L, Iametti S, Barbiroli A et al (2005) Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin. J Biol Chem 280:22572–22581. doi:10.1074/jbc.M500549200
Caldinelli L, Molla G, Bracci L et al (2010) Effect of ligand binding on human d-amino acid oxidase: implications for the development of new drugs for schizophrenia treatment. Protein Sci 19:1500–1512. doi:10.1002/pro.429
Cappelletti P, Campomenosi P, Pollegioni L, Sacchi S (2013) The degradation (by distinct pathways) of human d-amino acid oxidase and its interacting partner pLG72—two key proteins in d-serine catabolism in the brain. FEBS J. doi:10.1111/febs.12616
Cuervo AM, Hildebrand H, Bomhard EM, Dice JF (1999) Direct lysosomal uptake of alpha 2-microglobulin contributes to chemically induced nephropathy. Kidney Int 55:529–545. doi:10.1046/j.1523-1755.1999.00268.x
Dice J (1990) Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 15:305–309
Dietrich DR, Rasonyi T (1995) Preneoplastic lesions in kidney and carcinogenesis by non-genotoxic compounds. Arch Toxicol Suppl 17:536–546. doi:10.1016/0378-4274(94)90255-0
Dietrich DR, Heussner AH, O’Brien E et al (2008) Propiverine-induced accumulation of nuclear and cytosolic protein in F344 rat kidneys: isolation and identification of the accumulating protein. Toxicol Appl Pharmacol 233:411–419. doi:10.1016/j.taap.2008.09.014
Erath S, Groettrup M (2014) No evidence for immunoproteasomes in chicken lymphoid organs and activated lymphocytes. Immunogenetics 67:51–60. doi:10.1007/s00251-014-0814-1
Fordor K, Wolf J, Erdmann R et al (2012) Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol. doi:10.1371/journal.pbio.1001309
Fransen M (2012) Peroxisome dynamics: molecular players, mechanisms, and (dys)functions. ISRN Cell Biol 2012:1–24. doi:10.5402/2012/714192
Frattini LF, Piubelli L, Sacchi S et al (2011) Is rat an appropriate animal model to study the involvement of d-serine catabolism in schizophrenia? Insights from characterization of d-amino acid oxidase. FEBS J 278:4362–4373. doi:10.1111/j.1742-4658.2011.08354.x
Frazier KS, Seely JC, Hard GC et al (2012) Proliferative and nonproliferative lesions of the rat and mouse urinary system. Toxicol Pathol 40:14S. doi:10.1177/0192623312438736
Gopinath C, Prentice DE, Lewis DJ (1987) Atlas of experimental toxicological pathology. Springer, Netherlands
Hard GC, Snowden RT (1991) Hyaline droplet accumulation in rodent kidney proximal tubules: an association with histiocytic sarcoma. Toxicol Pathol 19:88–97. doi:10.1177/019262339101900202
Hard GC, Rodgers IS, Baetcke KP et al (1993) Hazard evaluation of chemicals that cause accumulation of alpha(2u)-globulin, hyaline droplet nephropathy, and tubule neoplasia in the kidneys of male rats. Environ Health Perspect 99:313–349
Hard G, Alden C, Bruner R, Frith C (1999) Non-proliferative lesions of the kidney and lower urinary tract in rats. Guides for Toxicologic Pathology, STP/ARP/AFIP, Washington, DC
Harris CM, Molla G, Pilone MS, Pollegioni L (1999) Studies on the reaction mechanism of Rhodotorula gracilis d-amino-acid oxidase. Role of the highly conserved Tyr-223 on substrate binding and catalysis. J Biol Chem 274:36233–36240. doi:10.1074/jbc.274.51.36233
Haustein K, Huller G (1988) On the pharmacokinetics and metabolism of propiverine in man. Eur J Drug Metab Pharmacokinet 13:81–90
Heussner AHH, Sprinz MI, Balaguer P, Dietrich DR (2016) Probing the PPAR involvement in the propiverine-induced renal DAAO accumulation in rats. PPAR Res (Submitted)
Inoue H, Enomoto M, Kobayashi K (1989) Two-year oral carcinogenicity study in mice (B6C3F1) with P4 (propiverine hydrochloride). Rep No 1556 (Apogepha ID P150) p 258
Iwata A, Nagashima Y, Matsumoto L et al (2009) Intranuclear degradation of polyglutamine aggregates by the ubiquitin-proteasome system. J Biol Chem 284:9796–9803. doi:10.1074/jbc.M809739200
Jung S, Marelli M, Rachubinski RA et al (2010) Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J Biol Chem 285:6739–6749. doi:10.1074/jbc.M109.058552
Kohda S, Nishikawa H, Sumino M et al (1989) One-year chronic oral toxicity study of propiverine hydrochloride in dogs followed by one-month recovery. J Toxicol Sci 14:111–160
Konno R (1998) Rat d-amino-acid oxidase cDNA: rat d-amino-acid oxidase as an intermediate form between mouse and other mammalian d-amino-acid oxidases. Biochim Biophys Acta 1395:165–170
Konno R, Sasaki M, Asakura S et al (1997) d-Amino-acid oxidase is not present in the mouse liver. Biochim Biophys Acta 1335:173–181
Konno R, Okamura T, Kasai N et al (2009) Mutant rat strain lacking d-amino-acid oxidase. Amino Acids 37:367–375. doi:10.1007/s00726-008-0163-1
Latonen L (2011) Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress. Bioessays 33:386–395. doi:10.1002/bies.201100008
Latonen L, Moore HM, Bai B et al (2011) Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene 30:790–805. doi:10.1038/onc.2010.469
Lee DH, Goldberg AL (1998) Proteasome inhibitors:valuable new tools for cell biologists. Trends Cell Biol 8:397–403
Lehman-McKeeman LD, Rivera-Torres MI, Caudill D (1990) Lysosomal degradation of α2u-globulin and α2u-globulin-xenobiotic conjugates. Toxicol Appl Pharmacol 548:539–548
Madersbacher H, Mürtz G (2001) Efficacy, tolerability and safety profile of propiverine in the treatment of the overactive bladder (non-neurogenic and neurogenic). World J Urol 19:324–335
May K, Westphal K, Giessmann T et al (2008) Disposition and antimuscarinic effects of the urinary bladder spasmolytics propiverine: influence of dosage forms and circadian-time rhythms. J Clin Pharmacol 48:570–579. doi:10.1177/0091270008315314
Molla G, Sacchi S, Bernasconi M et al (2006) Characterization of human d-amino acid oxidase. FEBS Lett 580:2358–2364. doi:10.1016/j.febslet.2006.03.045
Nakano S, Kuwata M, Hasegawa H et al (1989) Thirteen-week oral toxicity study of propiverine hydrochloride in rats. J Toxicol Sci. doi:10.2131/jts.14.SupplementII_13
Park S-H, Kukushkin Y, Gupta R et al (2013) PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154:134–145. doi:10.1016/j.cell.2013.06.003
Pilone MS (2000) d-Amino acid oxidase: new findings. Cell Mol Life Sci 57:1732–1747
Pollegioni L, Piubelli L, Sacchi S et al (2007) Physiological functions of d-amino acid oxidases: from yeast to humans. Cell Mol Life Sci C 64:1373–1394. doi:10.1007/s00018-007-6558-4
Poole B, Leighton F, De Duve C (1969) The synthesis and turnover of rat liver peroxisomes. Turnover of peroxisome proteins. J Cell Biol 41:536–546. doi:10.1083/jcb.59.2.507
Prasad R, Kawaguchi S, Ng DTW (2010) A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell 21:2117–2127. doi:10.1091/mbc.E10
Radi ZA, Stewart ZS, Grzemski FA, Bobrowski WF (2013) Renal pathophysiologic role of cortical tubular inclusion bodies. Toxicol Pathol 41:32–37. doi:10.1177/0192623312450629
Read NG (1991) The role of lysosomes in hyaline droplet nephropathy induced by a variety of pharmacological agents in the male rat. Histochem J 23:436–443
Reits EA, Benham AM, Plougastel B et al (1997) Dynamics of proteasome distribution in living cells. EMBO J 16:6087–6094. doi:10.1093/emboj/16.20.6087
Sacchi S, Caldinelli L, Cappelletti P et al (2012) Structure-function relationships in human d-amino acid oxidase. Amino Acids 43:1833–1850. doi:10.1007/s00726-012-1345-4
Sacchi S, Rosini E, Pollegioni L, Molla G (2013) d-Amino acid oxidase inhibitors as a novel class of drugs for schizophrenia therapy. Curr Pharm Des 19:2499–2511. doi:10.2174/1381612811319140002
Shibata Y, Morimoto RI (2014) How the nucleus copes with proteotoxic stress. Curr Biol 24:R463–R474. doi:10.1016/j.cub.2014.03.033
Shimoyama N, Nakatsuji S, Andoh R et al (2014) Spontaneously occurring formation of intranuclear and cytoplasmic inclusions in renal proximal epithelium due to accumulation of d-amino acid oxidase in Wistar Hannover rats. Toxicol Pathol. doi:10.1177/0192623314560611
Subak L, Richter H, Hunskaar S (2009) Obesity and urinary incontinence: epidemiology and clinical research update. J Urol 182:3–5. doi:10.1016/j.juro.2009.08.071.Obesity
Sun Y, Yu H, Zheng D et al (2011) Sudan black B reduces autofluorescence in murine renal tissue. Arch Pathol Lab Med 135:1335–1342. doi:10.5858/arpa.2010-0549-OA
Swenberg JA (1993) Alpha 2u-globulin nephropathy: review of the cellular and molecular mechanisms involved and their implications for human risk assessment. Environ Health Perspect 101(Suppl 6):39–44
Swenberg J, Short B, Borghoff S (1989) The comparative pathobiology of α 2u-globulin nephropathy. Toxicol Appl Pharmacol 46:35–46. doi:10.1016/0041-008X(89)90053-7
Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11:777–788. doi:10.1038/nrm2993
Usuda N, Yokota S, Hashimoto T, Nagata T (1986) Immunocytochemical localization of d-amino acid oxidase in the central clear matrix of rat kidney peroxisomes. J Histochem Cytochem 34:1709–1718. doi:10.1177/34.12.2878022
von Mikecz A (2006) The nuclear ubiquitin-proteasome system. J Cell Sci 119:1977–1984. doi:10.1242/jcs.03008
Wein A (2011) Symptom-based diagnosis of overactive bladder: an overview. Can Urol Assoc J 5:S135–S136. doi:10.5489/cuaj.11183
Wójcik C, DeMartino GN (2003) Intracellular localization of proteasomes. Int J Biochem Cell Biol 35:579–589. doi:10.1016/S1357-2725(02)00380-1
Wuest M, Weiss A, Waelbroeck M et al (2006) Propiverine and metabolites: differences in binding to muscarinic receptors and in functional models of detrusor contraction. Naunyn Schmiedebergs Arch Pharmacol 374:87–97. doi:10.1007/s00210-006-0103-0
Yamada S, Ito Y, Taki Y et al (2010) The N-oxide metabolite contributes to bladder selectivity resulting from oral propiverine: muscarinic receptor binding and pharmacokinetics. Drug Metab Dispos 38:1314–1321. doi:10.1124/dmd.110.033233
Yamashita K, Nakano S, Kuwata M et al (1989) Acute toxicity studies of propiverine hydrochloride. J Toxicol Sci 14:1–11
Yamashita K, Kuwata M, Irimura K et al (1990) Fifty-two-week oral chronic toxicity study of propiverine hydrochloride in rats. J Toxicol Sci 15:107–144. doi:10.2131/jts.15.107
Acknowledgments
This work was supported by the Deutsche Deutsche Forschungsgemeinschaft, DFG (RTG 1331). LP and SS were supported by Grant from Fondo di Ateneo per la Ricerca. We gratefully acknowledge Apogepha Arzneimittel GmbH (Germany) for supplying propiverine and propiverine-N-oxide. We thank Dr. S. Erath and Prof. Dr. M. Groettrup for providing substances for, and hands-on instructions with, the proteasome activity assay as well as K. Collins and C. Grimm for technical assistance. In addition, we thank the BioImaging Center (BIC, University of Konstanz) for instrumentation.
Author contributions
L. Luks designed and performed most of the experiments, analyzed, interpreted and discussed the evolving data, and wrote the manuscript. S. Sacchi and L. Pollegioni performed the in vitro binding experiments and edited the manuscript. D.R. Dietrich designed the overall research goals and approaches, interpreted and discussed the evolving data, and was deeply involved in manuscript writing. All authors read and approved the final manuscript.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Suppl. Figure 1
Catalase loses peroxisomal localization after propiverine treatment. Confocal microscopy of kidney sections from male F344 rats after placebo or propiverine treatment. Co-staining of peroxisomal membrane protein ABCD3 and peroxisomal enzyme catalase. A) Catalase is located in peroxisomes in control animals. B) Peroxisomal localization of catalase is partly lost after propiverine treatment. Catalase accumulates in nuclei and cytosol but is also diffusely distributed in the cytosol. Black scale bar: 20 µm, scale bar in magnification box: 5 µm. prop. = propiverine (TIFF 4366 kb)
Rights and permissions
About this article
Cite this article
Luks, L., Sacchi, S., Pollegioni, L. et al. Novel insights into renal d-amino acid oxidase accumulation: propiverine changes DAAO localization and peroxisomal size in vivo. Arch Toxicol 91, 427–437 (2017). https://doi.org/10.1007/s00204-016-1685-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00204-016-1685-z
Keywords
- Propiverine
- d-Amino acid oxidase
- Renal protein accumulation
- Protein mistrafficking