Alelyunas YW, Empfield JR, McCarthy D et al (2010) Experimental solubility profiling of marketed CNS drugs, exploring solubility limit of CNS discovery candidate. Bioorganic Med Chem Lett 20:7312–7316. doi:10.1016/j.bmcl.2010.10.068
CAS
Article
Google Scholar
Aller SG, Yu J, Ward A et al (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722. doi:10.1126/science.1168750
CAS
Article
PubMed
PubMed Central
Google Scholar
Andersson PL, Maran U, Fara D et al (2002) General and class specific models for prediction of soil sorption using various physicochemical descriptors. J Chem Inf Comput Sci 42:1450–1459
CAS
Article
PubMed
Google Scholar
Aronov AM (2008) Tuning out of hERG. Curr Opin Drug Discov Devel 11:128–140
CAS
PubMed
Google Scholar
Bajorath J (2012) Computational chemistry in pharmaceutical research: at the crossroads. J Comput Aided Mol Des 26:11–12. doi:10.1007/s10822-011-9488-z
CAS
Article
PubMed
Google Scholar
Bajorath J (2014) Exploring activity cliffs from a chemoinformatics perspective. Mol Inform 33:438–442. doi:10.1002/minf.201400026
CAS
Article
PubMed
Google Scholar
Bajorath J, Peltason L, Wawer M et al (2009) Navigating structure-activity landscapes. Drug Discov Today 14:698–705
CAS
Article
PubMed
Google Scholar
Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39:2887–2893. doi:10.1021/jm9602928
CAS
Article
PubMed
Google Scholar
Benet LZ (2009) The drug transporter-metabolism alliance: uncovering and defining the interplay. Mol Pharm 6:1631–1643. doi:10.1021/mp900253n
CAS
Article
PubMed
PubMed Central
Google Scholar
Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592. doi:10.1146/annurev.biochem.71.102301.093055
CAS
Article
PubMed
Google Scholar
Breiman L (2001) Random Forests. Mach Learn 45:5–32. doi:10.1186/1478-7954-9-29
Article
Google Scholar
Broccatelli F, Carosati E, Cruciani G, Oprea TI (2010) Transporter-mediated efflux influences CNS side effects: ABCB1, from antitarget to target. Mol Inform 29:16–26. doi:10.1002/minf.200900075
CAS
Article
PubMed
PubMed Central
Google Scholar
Broccatelli F, Carosati E, Neri A et al (2011) A novel approach for predicting p-glycoprotein (ABCB1) Inhibition using molecular interaction fields. J Med Chem 54:1740–1751. doi:10.1021/jm101421d
CAS
Article
PubMed
PubMed Central
Google Scholar
Broccatelli F, Mannhold R, Moriconi A et al (2012) QSAR modeling and data mining link torsades de pointes risk to the interplay of extent of metabolism, active transport, and hERG liability. Mol Pharm 9:2290–2301
CAS
Article
PubMed
Google Scholar
Carrió P, López O, Sanz F, Pastor M (2015) eTOXlab, an open source modeling framework for implementing predictive models in production environments. J Cheminform. doi:10.1186/s13321-015-0058-6
PubMed
PubMed Central
Google Scholar
Cherkasov A, Muratov EN, Fourches D et al (2014) QSAR modeling: where have you been? where are you going to? J Med Chem 57:4977–5010. doi:10.1021/jm4004285
Choudhuri S, Klaassen CD (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 25:231–259
CAS
Article
PubMed
Google Scholar
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297
Google Scholar
Curigliano G, Mayer EL, Burstein HJ et al (2010) Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis 53:94–104
CAS
Article
PubMed
Google Scholar
Delaney JS (2004) ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci 44:1000–1005. doi:10.1021/ci034243x
CAS
Article
PubMed
Google Scholar
Dimova D, Bajorath J (2014) Extraction of SAR information from activity cliff clusters via matching molecular series. Eur J Med Chem 87:454–460. doi:10.1016/j.ejmech.2014.09.087
CAS
Article
PubMed
Google Scholar
Durán Á, Pastor M (2010) Pentacle. http://www.moldiscovery.com/software/pentacle
Durán Á, Martínez GC, Pastor M (2008) Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in molecular interaction fields. J Chem Inf Model 48:1813–1823. doi:10.1021/ci800037t
Article
PubMed
Google Scholar
EC (2015) REACH. European Community Regulation on chemicals and their safe use. http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm
Eckert H, Bajorath J (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today 12:225–233. doi:10.1016/j.drudis.2007.01.011
CAS
Article
PubMed
Google Scholar
Ekins S (2014) Progress in computational toxicology. J Pharmacol Toxicol Methods 69:115–140. doi:10.1016/j.vascn.2013.12.003
CAS
Article
PubMed
Google Scholar
Enoch SJ, Cronin MTD, Madden JC, Hewitt M (2009) Formation of structural categories to allow for read-across for teratogenicity. QSAR Comb Sci 28:696–708. doi:10.1002/qsar.200960011
CAS
Article
Google Scholar
FDA (2005) Guidance for industry starting dose in initial clinical trials guidance for industry estimating the maximum safe. FDA. doi:10.1089/blr.2006.25.697
Google Scholar
Fourches D, Barnes JC, Day NC et al (2010) Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem Res Toxicol 23:171–183. doi:10.1021/tx900326k
CAS
Article
PubMed
PubMed Central
Google Scholar
Fung M, Thornton A, Mybeck K et al (2001) Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999. Drug Inf J 35:293–317. doi:10.1177/009286150103500134
Google Scholar
Golbraikh A, Muratov E, Fourches D, Tropsha A (2014) Data set modelability by QSAR. J Chem Inf Model 54:1–4. doi:10.1021/ci400572x
CAS
Article
PubMed
PubMed Central
Google Scholar
Guha R (2012) Exploring uncharted territories: predicting activity cliffs in structure-activity landscapes. J Chem Inf Model 52:2181–2191. doi:10.1021/ci300047k
CAS
Article
PubMed
PubMed Central
Google Scholar
Guha R, Dutta D, Jurs PC, Chen T (2006) Local lazy regression: making use of the neighborhood to improve QSAR predictions. J Chem Inf Model 46:1836–1847. doi:10.1021/ci060064e
CAS
Article
PubMed
Google Scholar
Hancox JC, McPate MJ, El Harchi A, Zhang YH (2008) The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol Ther 119:118–132. doi:10.1016/j.pharmthera.2008.05.009
CAS
Article
PubMed
Google Scholar
Helgee EA, Carlsson L, Boyer S, Norinder U (2010) Evaluation of quantitative structure-activity relationship modeling strategies: local and global models. J Chem Inf Model 50:677–689. doi:10.1021/ci900471e
CAS
Article
PubMed
Google Scholar
Hewitt M, Enoch SJ, Madden JC et al (2013) Hepatotoxicity: a scheme for generating chemical categories for read-across, structural alerts and insights into mechanism(s) of action. Crit Rev Toxicol 43:537–558. doi:10.3109/10408444.2013.811215
CAS
Article
PubMed
Google Scholar
Hua Y, Yongyan W, Yiyu C (2007) Local and global quantitative structure-activity relationship modeling and prediction for the baseline toxicity. J Chem Inf Model 47:159–169. doi:10.1021/ci600299j
Article
Google Scholar
Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162. doi:10.1016/0005-2736(76)90160-7
CAS
Article
PubMed
Google Scholar
Klepsch F, Ecker GF (2010) Impact of the recent mouse p-glycoprotein structure for structure-based ligand design. Mol Inform 29:276–286. doi:10.1002/minf.201000017
CAS
Article
PubMed
Google Scholar
Könemann H (1980) Structure-activity relationships and additivity in fish toxicities of environmental pollutants. Ecotoxicol Environ Saf 4:415–421. doi:10.1016/0147-6513(80)90043-3
Article
PubMed
Google Scholar
Könemann H, Musch A (1981) Quantitative structure-activity relationships in fish toxicity studies Part 2: the influence of pH on the QSAR of chlorophenols. Toxicology 19:223–228. doi:10.1016/0300-483X(81)90131-1
Article
PubMed
Google Scholar
Kramer NI, Di Consiglio E, Blaauboer BJ, Testai E (2015) Biokinetics in repeated-dosing in vitro drug toxicity studies. Toxicol, Vitr
Google Scholar
Kruhlak NL, Choi SS, Contrera JF et al (2008) Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models. Toxicol Mech Methods 18:217–227. doi:10.1080/15376510701857262
CAS
Article
PubMed
Google Scholar
Kubinyi H (1998) Similarity and dissimilarity: a medicinal chemist’s view. Perspect Drug Discov Des 9-11:225–252. doi:10.1023/A:1027221424359
Landrum G RDKit: open-source cheminformatics. http://www.rdkit.org
Leise MD, Poterucha JJ, Talwalkar JA (2014) Drug-induced liver injury. Mayo Clin Proc 89:95–106
CAS
Article
PubMed
Google Scholar
Li Q, Jørgensen FS, Oprea T et al (2008) hERG classification model based on a combination of support vector machine method and GRIND descriptors. Mol Pharm 5:117–127. doi:10.1021/mp700124e
CAS
Article
PubMed
Google Scholar
Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22
Google Scholar
Liebler DC, Guengerich FP (2005) Elucidating mechanisms of drug-induced toxicity. Nat Rev Drug Discov 4:410–420. doi:10.1038/nrd1720
CAS
Article
PubMed
Google Scholar
Lin Y, Jeon Y (2006) Random forests and adaptive nearest neighbors. J Am Stat Assoc 101:578–590. doi:10.1198/016214505000001230
CAS
Article
Google Scholar
Loo TW, Clarke DM (2002) Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein. J Biol Chem 277:44332–44338. doi:10.1074/jbc.M208433200
CAS
Article
PubMed
Google Scholar
MACCS Structural Keys (2011) Accelrys, San Diego, CA
Maggiora GM (2006) On outliers and activity cliffs—Why QSAR often disappoints. J Chem Inf Model 46:1535. doi:10.1021/ci060117s
CAS
Article
PubMed
Google Scholar
Maggiora G, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. J Med Chem 57:3186–3204. doi:10.1021/jm401411z
CAS
Article
PubMed
Google Scholar
Martens H (2001) Reliable and relevant modelling of real world data: a personal account of the development of PLS regression. Chemometr Intell Lab Syst 58:85–95. doi:10.1016/S0169-7439(01)00153-8
CAS
Article
Google Scholar
Martin YC (1981) A practitioner’s perspective of the role of quantitative structure-activity analysis in medicinal chemistry. J Med Chem 24:229–237. doi:10.1021/jm00135a001
CAS
Article
PubMed
Google Scholar
Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45:4350–4358
CAS
Article
PubMed
Google Scholar
Medina-Franco JL (2012) Scanning structure−activity relationships with structure−activity similarity and related maps: from consensus activity cliffs to selectivity switches. J Chem Inf Model 52:2485–2493. doi:10.1021/ci300362x
Medina-Franco JL (2013) Activity cliffs: facts or artifacts? Chem Biol Drug Des 81:553–556. doi:10.1111/cbdd.12115
CAS
Article
PubMed
Google Scholar
Mevik B-H, Wehrens R (2007) The pls package: principal component and partial least squares regression in R. J Stat Softw 18:1–24
Article
Google Scholar
Meyer D, Dimitriadou E, Hornik K et al (2014) e1071: Misc Functions of the Department of Statistics (e1071), TU Wien
Milletti F, Storchi L, Sforna G, Cruciani G (2007) New and original pKa prediction method using grid molecular interaction fields. J Chem Inf Model 47:2172–2181. doi:10.1021/ci700018y
CAS
Article
PubMed
Google Scholar
Milletti F, Storchi L, Sforna G et al (2009) Tautomer enumeration and stability prediction for virtual screening on large chemical databases. J Chem Inf Model 49:68–75. doi:10.1021/ci800340j
CAS
Article
PubMed
Google Scholar
Morgan HL (1965) The generation of a unique machine description for chemical structures—a technique developed at chemical abstracts service. J Chem Doc 5:107–113
CAS
Article
Google Scholar
Muller PY, Milton MN (2012) Index in drug development. Nat Rev Drug Discov 11:751–761. doi:10.1038/nrd3801
CAS
Article
PubMed
Google Scholar
Muster W, Breidenbach A, Fischer H et al (2008) Computational toxicology in drug development. Drug Discov Today 13:303–310. doi:10.1016/j.drudis.2007.12.007
CAS
Article
PubMed
Google Scholar
Nikolova N, Jaworska J (2003) Approaches to measure chemical similarity—a review. QSAR Comb Sci 22:1006–1026. doi:10.1002/qsar.200330831
Article
Google Scholar
NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington
Google Scholar
Obiol-Pardo C, Gomis-Tena J, Sanz F et al (2011) A multiscale simulation system for the prediction of drug-induced cardiotoxicity. J Chem Inf Model 51:483–492. doi:10.1021/ci100423z
CAS
Article
PubMed
Google Scholar
Orogo AM, Choi SS, Minnier BL, Kruhlak NL (2012) Construction and consensus performance of (Q)SAR models for predicting phospholipidosis using a dataset of 743 compounds. Mol Inform 31:725–739. doi:10.1002/minf.201200048
CAS
Article
PubMed
Google Scholar
Park YC, Cho MH (2011) A new way in deciding NOAEL based on the findings from GLP-toxicity test. Toxicol Res 27:133–135. doi:10.5487/TR.2011.27.3.133
Article
PubMed
PubMed Central
Google Scholar
Pastor M (2006) Alignment-independent descriptors from molecular interaction fields. In: Cruciani G (ed) Molecular interaction fields applications in drug discovery. ADME Predict. Wiley-VCH, London, pp 117–141
Chapter
Google Scholar
Pastor M, Cruciani G, McLay I et al (2000) GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243. doi:10.1021/jm000941m
CAS
Article
PubMed
Google Scholar
Perkins R, Fang H, Tong W, Welsh WJ (2003) Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem 22:1666–1679
CAS
Article
PubMed
Google Scholar
Przybylak KR, Alzahrani AR, Cronin MTD (2014) How does the quality of phospholipidosis data influence the predictivity of structural alerts? J Chem Inf Model. doi:10.1021/ci500233k
PubMed
Google Scholar
Raunio H (2011) In silico toxicology—non-testing methods. Front Pharmacol 2:33. doi:10.3389/fphar.2011.00033
Article
PubMed
PubMed Central
Google Scholar
Reasor MJ, Hastings KL, Ulrich RG (2006) Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 5:567–583. doi:10.1517/14740338.5.4.567
CAS
Article
PubMed
Google Scholar
Recanatini M, Cavalli A, Masetti M (2008) Modeling HERG and its interactions with drugs: recent advances in light of current potassium channel simulations. ChemMedChem 3:523–535. doi:10.1002/cmdc.200700264
CAS
Article
PubMed
Google Scholar
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754. doi:10.1021/ci100050t
CAS
Article
PubMed
Google Scholar
Roy K, Mitra I, Kar S et al (2012) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52:396–408. doi:10.1021/ci200520g
CAS
Article
PubMed
Google Scholar
Sadowski J, Gasteiger J (1993) From atoms and bonds to three-dimensional atomic coordinates: automatic model builders. Chem Rev 93:2567–2581. doi:10.1021/cr00023a012
CAS
Article
Google Scholar
Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Model 34:1000–1008. doi:10.1021/ci00020a039
CAS
Article
Google Scholar
Sanz F, Carrió P, López O et al (2015) Integrative modeling strategies for predicting drug toxicities at the eTOX project. Mol Inform 34:477–484. doi:10.1002/minf.201400193
CAS
Article
PubMed
Google Scholar
Sawada H, Takami K, Asahi S (2005) A toxicogenomic approach to drug-induced phospholipidosis: analysis of its induction mechanism and establishment of a novel in vitro screening system. Toxicol Sci 83:282–292. doi:10.1093/toxsci/kfh264
CAS
Article
PubMed
Google Scholar
Schultz TW, Amcoff P, Berggren E et al (2015) A strategy for structuring and reporting a read-across prediction of toxicity. Regul Toxicol Pharmacol 72:586–601. doi:10.1016/j.yrtph.2015.05.016
CAS
Article
PubMed
Google Scholar
Sheridan RP (2014) Global quantitative structure–activity relationship models vs selected local models as predictors of off-target activities for project compounds. J Chem Inf Model 54:1083–1092. doi:10.1021/ci500084w
CAS
Article
PubMed
Google Scholar
Szakács G, Paterson JK, Ludwig JA et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234. doi:10.1038/nrd1984
Article
PubMed
Google Scholar
Thai K-M, Windisch A, Stork D et al (2010) The hERG potassium channel and drug trapping: insight from docking studies with propafenone derivatives. ChemMedChem 5:436–442. doi:10.1002/cmdc.200900374
CAS
Article
PubMed
Google Scholar
Treinen-Moslen M, Kanz MF (2006) Intestinal tract injury by drugs: importance of metabolite delivery by yellow bile road. Pharmacol Ther 112:649–667
CAS
Article
PubMed
Google Scholar
Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488. doi:10.1002/minf.201000061
CAS
Article
PubMed
Google Scholar
Vandenberg JI, Perry MD, Perrin MJ et al (2012) hERG K + channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478. doi:10.1152/physrev.00036.2011
CAS
Article
PubMed
Google Scholar
Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York
Book
Google Scholar
Wilk-Zasadna I, Bernasconi C, Pelkonen O, Coecke S (2015) Biotransformation in vitro: an essential consideration in the quantitative in vitro-to-in vivo extrapolation (QIVIVE) of toxicity data. Toxicology 332:8–19. doi:10.1016/j.tox.2014.10.006
CAS
Article
PubMed
Google Scholar
Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Model 38:983–996. doi:10.1021/ci9800211
CAS
Google Scholar
Yoon M, Blaauboer BJ, Clewell HJ (2015) Quantitative in vitro to in vivo extrapolation (QIVIVE): an essential element for in vitro-based risk assessment. Toxicology 332:1–3. doi:10.1016/j.tox.2015.02.002
CAS
Article
PubMed
Google Scholar