Archives of Toxicology

, Volume 90, Issue 5, pp 1181–1191 | Cite as

Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone

  • Sebastian Prill
  • Danny Bavli
  • Gahl Levy
  • Elishai Ezra
  • Elmar Schmälzlin
  • Magnus S. Jaeger
  • Michael Schwarz
  • Claus Duschl
  • Merav Cohen
  • Yaakov Nahmias
Organ Toxicity and Mechanisms

Abstract

Prediction of drug-induced toxicity is complicated by the failure of animal models to extrapolate human response, especially during assessment of repeated dose toxicity for cosmetic or chronic drug treatments. In this work, we present a 3D microreactor capable of maintaining metabolically active HepG2/C3A spheroids for over 28 days in vitro under stable oxygen gradients mimicking the in vivo microenvironment. Mitochondrial respiration was monitored using two-frequency phase modulation of phosphorescent microprobes embedded in the tissue. Phase modulation is focus independent and unaffected by cell death or migration. This sensitive measurement of oxygen dynamics revealed important information on the drug mechanism of action and transient subthreshold effects. Specifically, exposure to antiarrhythmic agent, amiodarone, showed that both respiration and the time to onset of mitochondrial damage were dose dependent showing a TC50 of 425 μm. Analysis showed significant induction of both phospholipidosis and microvesicular steatosis during long-term exposure. Importantly, exposure to widely used analgesic, acetaminophen, caused an immediate, reversible, dose-dependent loss of oxygen uptake followed by a slow, irreversible, dose-independent death, with a TC50 of 12.3 mM. Transient loss of mitochondrial respiration was also detected below the threshold of acetaminophen toxicity. The phenomenon was repeated in HeLa cells that lack CYP2E1 and 3A4, and was blocked by preincubation with ascorbate and TMPD. These results mark the importance of tracing toxicity effects over time, suggesting a NAPQI-independent targeting of mitochondrial complex III might be responsible for acetaminophen toxicity in extrahepatic tissues.

Keywords

Liver on chip Acetaminophen Amiodarone Mitochondria Oxygen uptake Bioreactor 

References

  1. Adeleye Y, Andersen M, Clewell R et al (2014) Implementing toxicity testing in the 21st century (TT21C): making safety decisions using toxicity pathways, and progress in a prototype risk assessment. Toxicology. doi:10.1016/j.tox.2014.02.007 PubMedGoogle Scholar
  2. Adler S, Basketter D, Creton S et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol 85(5):367–485. doi:10.1007/s00204-011-0693-2 CrossRefPubMedGoogle Scholar
  3. Anthérieu S, Rogue A, Fromenty B, Guillouzo A, Robin M-A (2011) Induction of vesicular steatosis by amiodarone and tetracycline is associated with up-regulation of lipogenic genes in heparg cells. Hepatology 53(6):1895–1905. doi:10.1002/hep.24290 CrossRefPubMedGoogle Scholar
  4. Ast C, Schmälzlin E, Löhmannsröben HG, van Dongen JT (2012) Optical oxygen micro- and nanosensors for plant applications. Sensors 12(6):7015–7032. doi:10.3390/s120607015 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baharvand H, Hashemi SM, Ashtian SK, Farrokhi A (2006) Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol 50(7):645–652. doi:10.1387/ijdb.052072hb CrossRefPubMedGoogle Scholar
  6. Ballet F (1997) Hepatotoxicity in drug development: detection, significance and solutions. J Hepatol 26(Suppl 2):26–36CrossRefPubMedGoogle Scholar
  7. Blieden M, Paramore LC, Shah D, Ben-Joseph R (2014) A perspective on the epidemiology of acetaminophen exposure and toxicity in the United States. Expert Rev Clin Pharmacol 7(3):341–348. doi:10.1586/17512433.2014.904744 CrossRefPubMedGoogle Scholar
  8. Burcham PC, Harman AW (1991) Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem 266(8):5049–5054PubMedGoogle Scholar
  9. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712. doi:10.1126/science.1064829 CrossRefPubMedGoogle Scholar
  10. Esterline RL, Fau RS, Ji S (1989) Reversible and irreversible inhibition of hepatic mitochondrial respiration by acetaminophen and its toxic metabolite, N-acetyl-p-benzoquinoneimine (NAPQI). Biochem Pharmacol 34(14):2387–2390CrossRefGoogle Scholar
  11. Folch A, Jo BH, Hurtado O, Beebe DJ, Toner M (2000) Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res 52(2):346–353CrossRefPubMedGoogle Scholar
  12. Gocht T, Berggren E, Ahr H et al (2014) The SEURAT-1 approach towards animal free human safety assessment. ALTEX 32(1):9–24. doi:10.14573/altex.1408041 PubMedGoogle Scholar
  13. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312. doi:10.1126/science.281.5381.1309 CrossRefPubMedGoogle Scholar
  14. Halevi A, Fau B-AD, Garty BZ (2000) Toxic epidermal necrolysis associated with acetaminophen ingestion. Ann Pharmacother 34(1):32–34CrossRefPubMedGoogle Scholar
  15. Han D, Fau DL, Fau WS et al (2013) Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci 34(4):243–253. doi:10.1016/j.tips.2013.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668CrossRefPubMedGoogle Scholar
  17. James LP, Mayeux PR, Hinson JA (2003) Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 31(12):1499–1506CrossRefPubMedGoogle Scholar
  18. Jones AF, Vale JA (1993) Paracetamol poisoning and the kidney. J Clin Pharm Ther 18(1):5–8CrossRefPubMedGoogle Scholar
  19. Kaplowitz N (2004a) Acetaminophen hepatoxicity: what do we know, what don’t we know, and what do we do next? Hepatology 40(1):23–26CrossRefPubMedGoogle Scholar
  20. Kaplowitz N (2004b) Drug-induced liver injury. Clin Infect Dis 38:S44–S48. doi:10.1086/381446 CrossRefPubMedGoogle Scholar
  21. Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4(6):489–499. doi:10.1038/nrd1750 CrossRefPubMedGoogle Scholar
  22. Kidambi S, Yarmush R, Novik E, Chao PB, Yarmush ML, Nahmias Y (2009) Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance. PNAS 106(17):15714–15719CrossRefPubMedPubMedCentralGoogle Scholar
  23. Leist M, Hasiwa N, Rovida C et al (2014) Consensus report on the future of animal-free systemic toxicity testing. ALTEX 31(3):341–356. doi:10.14573/altex.1406091 CrossRefPubMedGoogle Scholar
  24. Lewis JH, Fau RR, Fau CA et al (1989) Amiodarone hepatotoxicity: prevalence and clinicopathologic correlations among 104 patients. Hepatology 9(5):679–685CrossRefPubMedGoogle Scholar
  25. Löhmannsröben HG, Beck M, Hildebrandt N, Schmälzlin E, van Dongen JT (2006) New challenges in biophotonics: laser-based fluoroimmuno analysis and in vivo optical oxygen monitoring—art. no. 61570E. In: Gries W, Pearsall TP (eds) Workshop on Laser Applications in Europe. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie), vol 6157. Spie-Int Soc Optical Engineering, Bellingham, p E1570–E1570Google Scholar
  26. Meyers LL, Beierschmitt WP, Khairallah EA, Cohen SD (1988) Acetaminophen-induced inhibition of hepatic mitochondrial respiration in mice. Toxicol Appl Pharmacol 93(3):378–387. doi:10.1016/0041-008x(88)90040-3 CrossRefPubMedGoogle Scholar
  27. Nahmias Y, Berthiaume F, Yarmush ML (2006) Integration of technologies for hepatic tissue engineering. In: Lee K, Kaplan D (eds) Advances in biochemical engineering/biotechnology, vol 103., SpringerBerlin, Heidelberg, pp 309–329Google Scholar
  28. Papkovsky DB (2004) Methods in optical oxygen sensing: protocols and critical analyses. Methods Enzymol 381:715–735CrossRefPubMedGoogle Scholar
  29. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42(22):8700–8732. doi:10.1039/c3cs60131e CrossRefPubMedGoogle Scholar
  30. Porter KE, Dawson AG (1979) Inhibition of respiration and gluconeogenesis by paracetamol in rat-kidney preparations. Biochem Pharmacol 28(20):3057–3062. doi:10.1016/0006-2952(79)90613-0 CrossRefPubMedGoogle Scholar
  31. Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38(21):4271–4282. doi:10.1023/a:1026370729205 CrossRefGoogle Scholar
  32. Rowlands JC, Sander M, Bus JS, FutureTox Organizing C (2014) FutureTox: building the road for 21st century toxicology and risk assessment practices. Toxicol Sci 137(2):269–277. doi:10.1093/toxsci/kft252 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schmälzlin E, van Dongen JT, Klimant I et al (2005) An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys J 89(2):1339–1345. doi:10.1529/biophysj.105.063453 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tilles AW, Baskaran H, Roy P, Yarmush ML, Toner M (2001) Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol Bioeng 73(5):379–389CrossRefPubMedGoogle Scholar
  35. Vanderkooi JM, Maniara G, Green TJ, Wilson DF (1987) An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J Biol Chem 262(12):5476–5482PubMedGoogle Scholar
  36. Vinken M (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312(1879–3185 (Electronic)):158–165Google Scholar
  37. Yuan L, Kaplowitz N (2013) Mechanisms of drug-induced liver injury. Clin Liver Dis 17(4):507–518CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastian Prill
    • 1
  • Danny Bavli
    • 2
  • Gahl Levy
    • 2
  • Elishai Ezra
    • 2
  • Elmar Schmälzlin
    • 3
  • Magnus S. Jaeger
    • 1
  • Michael Schwarz
    • 4
  • Claus Duschl
    • 1
  • Merav Cohen
    • 2
  • Yaakov Nahmias
    • 2
  1. 1.Fraunhofer Institute for Cell Therapy and ImmunologyBranch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB)PotsdamGermany
  2. 2.Grass Center for BioengineeringThe Hebrew University of JerusalemJerusalemIsrael
  3. 3.Colibri Photonics GmbHPotsdamGermany
  4. 4.Institute of ToxicologyUniversity of TuebingenTübingenGermany

Personalised recommendations