Advertisement

Archives of Toxicology

, Volume 89, Issue 8, pp 1151–1173 | Cite as

The hallucinogenic world of tryptamines: an updated review

  • Ana Margarida Araújo
  • Félix Carvalho
  • Maria de Lourdes Bastos
  • Paula Guedes de Pinho
  • Márcia Carvalho
Review Article

Abstract

In the area of psychotropic drugs, tryptamines are known to be a broad class of classical or serotonergic hallucinogens. These drugs are capable of producing profound changes in sensory perception, mood and thought in humans and act primarily as agonists of the 5-HT2A receptor. Well-known tryptamines such as psilocybin contained in Aztec sacred mushrooms and N,N-dimethyltryptamine (DMT), present in South American psychoactive beverage ayahuasca, have been restrictedly used since ancient times in sociocultural and ritual contexts. However, with the discovery of hallucinogenic properties of lysergic acid diethylamide (LSD) in mid-1900s, tryptamines began to be used recreationally among young people. More recently, new synthetically produced tryptamine hallucinogens, such as alpha-methyltryptamine (AMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), emerged in the recreational drug market, which have been claimed as the next-generation designer drugs to replace LSD (‘legal’ alternatives to LSD). Tryptamine derivatives are widely accessible over the Internet through companies selling them as ‘research chemicals’, but can also be sold in ‘headshops’ and street dealers. Reports of intoxication and deaths related to the use of new tryptamines have been described over the last years, raising international concern over tryptamines. However, the lack of literature pertaining to pharmacological and toxicological properties of new tryptamine hallucinogens hampers the assessment of their actual potential harm to general public health. This review provides a comprehensive update on tryptamine hallucinogens, concerning their historical background, prevalence, patterns of use and legal status, chemistry, toxicokinetics, toxicodynamics and their physiological and toxicological effects on animals and humans.

Keywords

Tryptamines Hallucinogens 5-HT2A receptor Toxicokinetics Toxicodynamics Toxicity 

Notes

Acknowledgments

This work received financial support from the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundação para a Ciência e Tecnologia) through project Pest-C/EQB/LA0006/2013.

References

  1. Adams LM, Geyer MA (1985a) Effects of DOM and DMT in a proposed animal model of hallucinogenic activity. Prog Neuropsychopharmacol Biol Psychiatry 9(2):121–132PubMedGoogle Scholar
  2. Adams LM, Geyer MA (1985b) A proposed animal model for hallucinogens based on LSD’s effects on patterns of exploration in rats. Behav Neurosci 99(5):881–900PubMedGoogle Scholar
  3. Alatrash G, Majhail NS, Pile JC (2006) Rhabdomyolysis after ingestion of “foxy,” a hallucinogenic tryptamine derivative. Mayo Clin Proc 81(4):550–551. doi: 10.4065/81.4.550 PubMedGoogle Scholar
  4. Anden NE, Corrodi H, Fuxe K, Hokfelt T (1968) Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide. Br J Pharmacol 34(1):1–7PubMedCentralPubMedGoogle Scholar
  5. Appel JB, Callahan PM (1989) Involvement of 5-HT receptor subtypes in the discriminative stimulus properties of mescaline. Eur J Pharmacol 159(1):41–46PubMedGoogle Scholar
  6. Arbo MD, Bastos ML, Carmo HF (2012) Piperazine compounds as drugs of abuse. Drug Alcohol Depend 122(3):174–185. doi: 10.1016/j.drugalcdep.2011.10.007 PubMedGoogle Scholar
  7. Arunotayanun W, Gibbons S (2012) Natural product ‘legal highs’. Nat Prod Rep 29(11):1304–1316. doi: 10.1039/c2np20068f PubMedGoogle Scholar
  8. Babu K, Boyer EW, Hernon C, Brush DE (2005) Emerging drugs of abuse. Clin Pediatr Emerg Med 6(2):81–84. doi: 10.1016/j.cpem.2005.04.002 Google Scholar
  9. Badham ER (1984) Ethnobotany of psilocybin mushrooms, especially Psilocybe cubensis. J Ethnopharmacol 10(2):249–254PubMedGoogle Scholar
  10. Barker SA, Monti JA, Christian ST (1980) Metabolism of the hallucinogen N,N-dimethyltryptamine in rat brain homogenates. Biochem Pharmacol 29(7):1049–1057PubMedGoogle Scholar
  11. Barker SA, McIlhenny EH, Strassman R (2012) A critical review of reports of endogenous psychedelic N,N-dimethyltryptamines in humans: 1955–2010. Drug Test Anal 4(7–8):617–635. doi: 10.1002/dta.422 PubMedGoogle Scholar
  12. Benneyworth MA, Smith RL, Barrett RJ, Sanders-Bush E (2005) Complex discriminative stimulus properties of (+)lysergic acid diethylamide (LSD) in C57Bl/6J mice. Psychopharmacology 179(4):854–862. doi: 10.1007/s00213-004-2108-z PubMedGoogle Scholar
  13. Bjornstad K, Hulten P, Beck O, Helander A (2009) Bioanalytical and clinical evaluation of 103 suspected cases of intoxications with psychoactive plant materials. Clin Toxicol 47(6):566–572. doi: 10.1080/15563650903037181 Google Scholar
  14. Blair JB, Kurrasch-Orbaugh D, Marona-Lewicka D et al (2000) Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J Med Chem 43(24):4701–4710PubMedGoogle Scholar
  15. Boland DM, Andollo W, Hime GW, Hearn WL (2005) Fatality due to acute alpha-methyltryptamine intoxication. J Anal Toxicol 29(5):394–397PubMedGoogle Scholar
  16. Brandt SD, Freeman S, McGagh P, Abdul-Halim N, Alder JF (2004) An analytical perspective on favoured synthetic routes to the psychoactive tryptamines. J Pharm Biomed Anal 36(4):675–691. doi: 10.1016/j.jpba.2004.08.022 PubMedGoogle Scholar
  17. Brimblecombe RW (1967) Hyperthermic effects of some tryptamine derivatives in relation to their behavioral activity. Int J Neuropharmacol 6(5):423–429PubMedGoogle Scholar
  18. Brush DE, Bird SB, Boyer EW (2004) Monoamine oxidase inhibitor poisoning resulting from Internet misinformation on illicit substances. J Toxicol Clin Toxicol 42(2):191–195PubMedGoogle Scholar
  19. Bullis RK (2008) The “vine of the soul” vs. the controlled substances act: implications of the hoasca case. J Psychoact Drugs 40(2):193–199. doi: 10.1080/02791072.2008.10400630 Google Scholar
  20. Bunzow JR, Sonders MS, Arttamangkul S et al (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60(6):1181–1188PubMedGoogle Scholar
  21. Cakic V, Potkonyak J, Marshall A (2010) Dimethyltryptamine (DMT): subjective effects and patterns of use among Australian recreational users. Drug Alcohol Depend 111(1–2):30–37. doi: 10.1016/j.drugalcdep.2010.03.015 PubMedGoogle Scholar
  22. Callaway CW, Wing LL, Geyer MA (1990) Serotonin release contributes to the locomotor stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 254(2):456–464PubMedGoogle Scholar
  23. Callaway JC, Raymon LP, Hearn WL et al (1996) Quantitation of N,N-dimethyltryptamine and harmala alkaloids in human plasma after oral dosing with ayahuasca. J Anal Toxicol 20(6):492–497PubMedGoogle Scholar
  24. Carbonaro TM, Forster MJ, Gatch MB (2013) Discriminative stimulus effects of N,N-diisopropyltryptamine. Psychopharmacology 226(2):241–246. doi: 10.1007/s00213-012-2891-x PubMedCentralPubMedGoogle Scholar
  25. Chamakura RP (1994) Bufotenine—a hallucinogen in ancient snuff powders of South America and a drug of abuse on the streets of New York City. Forensic Sci Rev 6:1–18Google Scholar
  26. Christian ST, Harrison R, Quayle E, Pagel J, Monti J (1977) The in vitro identification of dimethyltryptamine (DMT) in mammalian brain and its characterization as a possible endogenous neuroregulatory agent. Biochem Med 18(2):164–183PubMedGoogle Scholar
  27. Clatts MC, Goldsamt LA, Yi H (2005) Club drug use among young men who have sex with men in NYC: a preliminary epidemiological profile. Subst Use Misuse 40(9–10):1317–1330. doi: 10.1081/JA-200066898 PubMedCentralPubMedGoogle Scholar
  28. Colpaert FC, Niemegeers CJ, Janssen PA (1982) A drug discrimination analysis of lysergic acid diethylamide (LSD): in vivo agonist and antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, a LSD-antagonist. J Pharmacol Exp Ther 221(1):206–214PubMedGoogle Scholar
  29. Compton DM, Dietrich KL, Selinger MC, Testa EK (2011) 5-methoxy-N,N-di(iso)propyltryptamine hydrochloride (Foxy)-induced cognitive deficits in rat after exposure in adolescence. Physiol Behav 103(2):203–209. doi: 10.1016/j.physbeh.2011.01.021 PubMedGoogle Scholar
  30. Corkery JM, Durkin E, Elliott S, Schifano F, Ghodse AH (2012) The recreational tryptamine 5-MeO-DALT (N,N-diallyl-5-methoxytryptamine): a brief review. Prog Neuropsychopharmacol Biol Psychiatry 39(2):259–262. doi: 10.1016/j.pnpbp.2012.05.022 PubMedGoogle Scholar
  31. Cozzi NV, Gopalakrishnan A, Anderson LL et al (2009) Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J Neural Transm 116(12):1591–1599. doi: 10.1007/s00702-009-0308-8 PubMedGoogle Scholar
  32. Cunningham N (2008) Hallucinogenic plants of abuse. Emerg Med Australas 20(2):167–174. doi: 10.1111/j.1742-6723.2008.01070.x PubMedGoogle Scholar
  33. Cunningham KA, Appel JB (1987) Neuropharmacological reassessment of the discriminative stimulus properties of d-lysergic acid diethylamide (LSD). Psychopharmacology 91(1):67–73PubMedGoogle Scholar
  34. Drug Enforcement Administration DoJ (2001) An encounter with 5-methoxy-N,N-diisopropyltryptamine. Microgram Bull 34:126Google Scholar
  35. Drug Enforcement Administration DoJ (2003) Schedules of controlled substances: temporary placement of alpha-methyltryptamine and 5-methoxy-N,N-diisopropyltryptamine into Schedule I. Final rule. Fed Regist 68(65):16427–16430Google Scholar
  36. Drug Enforcement Administration DoJ (2004) Schedules of controlled substances: placement of alpha-methyltryptamine and 5-methoxy-N,N-diisopropyltryptamine into Schedule I of the Controlled Substances Act. Final rule. Fed Regist 69(188):58950–58953Google Scholar
  37. Drugs Forum (2010) 5-MeO-DALT. Available at http://www.drugs-forum.com/forum/showwiki.php?title=5-MeODALT
  38. Elder J, Shellehberger M (1962) Antagonism of lysergic acid diethylamide (LSD) induced hyperthermia. J Pharmacol Exp Ther 136:293–297Google Scholar
  39. Elliott S (2011) Current awareness of piperazines: pharmacology and toxicology. Drug Test Anal 3(7–8):430–438. doi: 10.1002/dta.307 PubMedGoogle Scholar
  40. EMCDDA (2010) Annual report on the state of the drugs problem in Europe. Euro Surveill. doi: 10.2810/33349. http://www.emcdda.europa.eu/
  41. EMCDDA (2012) The EMCDDA annual report 2012: the state of the drugs problem in Europe. Euro Surveill. doi: 10.2810/64775. http://www.emcdda.europa.eu/
  42. EMCDDA (2014) European drug report 2014: trends and developments. Euro Surveill. doi: 10.2810/32306. http://www.emcdda.europa.eu/
  43. Erspamer V (1955) Observations on the fate of indolalkylamines in the organism. J Physiol 127(1):118–133PubMedCentralPubMedGoogle Scholar
  44. Fantegrossi WE, Harrington AW, Kiessel CL et al (2006) Hallucinogen-like actions of 5-methoxy-N,N-diisopropyltryptamine in mice and rats. Pharmacol Biochem Behav 83(1):122–129. doi: 10.1016/j.pbb.2005.12.015 PubMedGoogle Scholar
  45. Fantegrossi WE, Murnane KS, Reissig CJ (2008a) The behavioral pharmacology of hallucinogens. Biochem Pharmacol 75(1):17–33. doi: 10.1016/j.bcp.2007.07.018 PubMedCentralPubMedGoogle Scholar
  46. Fantegrossi WE, Reissig CJ, Katz EB, Yarosh HL, Rice KC, Winter JC (2008b) Hallucinogen-like effects of N,N-dipropyltryptamine (DPT): possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents. Pharmacol Biochem Behav 88(3):358–365. doi: 10.1016/j.pbb.2007.09.007 PubMedCentralPubMedGoogle Scholar
  47. Fish MS, Johnson NM, Horning EC (1955a) Piptadenia alkaloids. Indole bases of Piptadenia peregrina (L) Benth and related species. J Am Chem Soc 77:5892–5895Google Scholar
  48. Fish MS, Johnson NM, Lawrence EP, Horning EC (1955b) Oxidative N-dealkylation. Biochim Biophys Acta 18(4):564–565PubMedGoogle Scholar
  49. Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323(5916):934–937. doi: 10.1126/science.1166127 PubMedCentralPubMedGoogle Scholar
  50. Franzen F, Gross H (1965) Tryptamine, N,N-dimethyltryptamine, N,N-dimethyl-5-hydroxytryptamine and 5-methoxytryptamine in human blood and urine. Nature 206(988):1052PubMedGoogle Scholar
  51. Freeman S, Alder JF (2002) Arylethylamine psychotropic recreational drugs: a chemical perspective. Eur J Med Chem 37(7):527–539PubMedGoogle Scholar
  52. Fuse-Nagase Y, Nishikawa T (2013) Prolonged delusional state triggered by repeated ingestion of aromatic liquid in a past 5-methoxy-N,N-diisopropyltryptamine abuser. Addict Sci Clin Pract 8(1):9. doi: 10.1186/1940-0640-8-9 PubMedCentralPubMedGoogle Scholar
  53. Gable RS (2007) Risk assessment of ritual use of oral dimethyltryptamine (DMT) and harmala alkaloids. Addiction 102(1):24–34. doi: 10.1111/j.1360-0443.2006.01652.x PubMedGoogle Scholar
  54. Gatch MB, Rutledge MA, Carbonaro T, Forster MJ (2009) Comparison of the discriminative stimulus effects of dimethyltryptamine with different classes of psychoactive compounds in rats. Psychopharmacology 204(4):715–724. doi: 10.1007/s00213-009-1501-z PubMedCentralPubMedGoogle Scholar
  55. Geyer MA, Light RK, Rose GJ et al (1979) A characteristic effect of hallucinogens on investigatory responding in rats. Psychopharmacology 65(1):35–40PubMedGoogle Scholar
  56. Gibbons S (2012) ‘Legal highs’-novel and emerging psychoactive drugs: a chemical overview for the toxicologist. Clin Toxicol 50(1):15–24. doi: 10.3109/15563650.2011.645952 Google Scholar
  57. Glennon RA (1986) Discriminative stimulus properties of the serotonergic agent 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Life Sci 39(9):825–830PubMedGoogle Scholar
  58. Glennon RA (1996) Classical hallucinogens. In: Schuster CR, Kuhar MJ (eds) Pharmacological aspects of drug dependence. Handbook of experimental pharmacology, Springer, Basel, pp 343–371Google Scholar
  59. Glennon RA, Rosecrans JA, Young R, Gaines J (1979) Hallucinogens as a discriminative stimuli: generalization of DOM to a 5-methoxy-N,N-dimethyltryptamine stimulus. Life Sci 24(11):993–997PubMedGoogle Scholar
  60. Glennon RA, Young R, Rosecrans JA (1983) Antagonism of the effects of the hallucinogen DOM and the purported 5-HT agonist quipazine by 5-HT2 antagonists. Eur J Pharmacol 91(2–3):189–196PubMedGoogle Scholar
  61. Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35(25):2505–2511PubMedGoogle Scholar
  62. Glennon RA, Titeler M, Seggel MR, Lyon RA (1987) N-methyl derivatives of the 5-HT2 agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J Med Chem 30(5):930–932PubMedGoogle Scholar
  63. Glennon RA, Chaurasia C, Titeler M (1990) Binding of indolylalkylamines at 5-HT2 serotonin receptors: examination of a hydrophobic binding region. J Med Chem 33(10):2777–2784PubMedGoogle Scholar
  64. Gonzalez-Maeso J, Weisstaub NV, Zhou M et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452. doi: 10.1016/j.neuron.2007.01.008 PubMedGoogle Scholar
  65. Government P (2013) Decreto Lei no. 54/2013. In: Justiça Dd (ed). Diário da República 75Google Scholar
  66. Gresch PJ, Barrett RJ, Sanders-Bush E, Smith RL (2007) 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide. J Pharmacol Exp Ther 320(2):662–669. doi: 10.1124/jpet.106.112946 PubMedGoogle Scholar
  67. Guchhait RB (1976) Biogenesis of 5-methoxy-N,N-dimethyltryptamine in human pineal gland. J Neurochem 26(1):187–190PubMedGoogle Scholar
  68. Gutsche B, Grun C, Scheutzow D, Herderich M (1999) Tryptophan glycoconjugates in food and human urine. Biochem J 343(Pt 1):11–19PubMedCentralPubMedGoogle Scholar
  69. Hagenbach D, Werthmuller L (2011) Mystic chemist: the life of Albert Hofmann and his discovery of LSD. Synergetic Press, Santa Fe, New MexicoGoogle Scholar
  70. Halberstadt AL, Geyer MA (2011) Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61(3):364–381. doi: 10.1016/j.neuropharm.2011.01.017 PubMedCentralPubMedGoogle Scholar
  71. Halberstadt A, Geyer M (2013) Neuropharmacology of lysergic acid diethylamide (LSD) and other hallucinogens. In: Miller P (ed) Biological research on addiction: comprehensive addictive behaviors and disorders, vol 2. Elsevier, London, pp 625–635Google Scholar
  72. Halberstadt AL, Buell MR, Masten VL, Risbrough VB, Geyer MA (2008) Modification of the effects of 5-methoxy-N,N-dimethyltryptamine on exploratory behavior in rats by monoamine oxidase inhibitors. Psychopharmacology 201(1):55–66. doi: 10.1007/s00213-008-1247-z PubMedCentralPubMedGoogle Scholar
  73. Halberstadt AL, Koedood L, Powell SB, Geyer MA (2011) Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J Psychopharmacol 25(11):1548–1561. doi: 10.1177/0269881110388326 PubMedCentralPubMedGoogle Scholar
  74. Halpern JH (2004) Hallucinogens and dissociative agents naturally growing in the United States. Pharmacol Ther 102(2):131–138. doi: 10.1016/j.pharmthera.2004.03.003 PubMedGoogle Scholar
  75. Handovsky H (1920) Ein Alkaloid in Gifte von Bufo vulgaris. Arch Exp Pathol Pharmacol 86:138–158Google Scholar
  76. Hasler F, Bourquin D, Brenneisen R, Bar T, Vollenweider FX (1997) Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharm Acta Helv 72(3):175–184PubMedGoogle Scholar
  77. Hasler F, Bourquin D, Brenneisen R, Vollenweider FX (2002) Renal excretion profiles of psilocin following oral administration of psilocybin: a controlled study in man. J Pharm Biomed Anal 30(2):331–339PubMedGoogle Scholar
  78. Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX (2004) Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology 172(2):145–156. doi: 10.1007/s00213-003-1640-6 PubMedGoogle Scholar
  79. Helsley S, Fiorella D, Rabin RA, Winter JC (1998) A comparison of N,N-dimethyltryptamine, harmaline, and selected congeners in rats trained with LSD as a discriminative stimulus. Prog Neuropsychopharmacol Biol Psychiatry 22(4):649–663PubMedGoogle Scholar
  80. Hill SL, Thomas SH (2011) Clinical toxicology of newer recreational drugs. Clin Toxicol 49(8):705–719. doi: 10.3109/15563650.2011.615318 Google Scholar
  81. Hirschhorn ID, Winter JC (1971) Mescaline and lysergic acid diethylamide (LSD) as discriminative stimuli. Psychopharmacologia 22(1):64–71PubMedGoogle Scholar
  82. Hofmann A (1976) LSD: My problem child. McGraw Hill, New YorkGoogle Scholar
  83. Hollister LE (1964) Chemical Psychoses. Annu Rev Med 15:203–214. doi: 10.1146/annurev.me.15.020164.001223 PubMedGoogle Scholar
  84. Horita A, Dille JM (1954) Pyretogenic effect of lysergic acid diethylamide. Science 120(3131):1100–1101PubMedGoogle Scholar
  85. Horita A, Gogerty JH (1958) The pyretogenic effect of 5-hydroxytryptophan and its comparison with that of LSD. J Pharmacol Exp Ther 122(2):195–200PubMedGoogle Scholar
  86. Horita A, Weber LJ (1961) The enzymic dephosphorylation and oxidation of psilocybin and psilocin by mammalian tissue homogenates. Biochem Pharmacol 7:47–54PubMedGoogle Scholar
  87. Hoshino T, Shimodaira K (1935) Synthese des Bufotenins und über 3-Methyl-3-β-oxyäthyl-indolenin. Synthesen in der Indol-Gruppe. XIV. Justus Liebigs Annalen der Chemie 520(1):19–30. doi: 10.1002/jlac.19355200104 Google Scholar
  88. Ikeda A, Sekiguchi K, Fujita K, Yamadera H, Koga Y (2005) 5-methoxy-N,N-diisopropyltryptamine-induced flashbacks. Am J Psychiatry 162(4):815. doi: 10.1176/appi.ajp.162.4.815 PubMedGoogle Scholar
  89. Isbell H (1959) Comparison of the reactions induced by psilocybin and LSD-25 in man. Psychopharmacologia 1:29–38PubMedGoogle Scholar
  90. Itokawa M, Iwata K, Takahashi M et al (2007) Acute confusional state after designer tryptamine abuse. Psychiatry Clin Neurosci 61(2):196–199. doi: 10.1111/j.1440-1819.2007.01638.x PubMedGoogle Scholar
  91. Jovel A, Felthous A, Bhattacharyya A (2014) Delirium due to intoxication from the novel synthetic tryptamine 5-MeO-DALT. J Forensic Sci 59(3):844–846. doi: 10.1111/1556-4029.12367 PubMedGoogle Scholar
  92. Kamata T, Katagi M, Kamata HT et al (2006) Metabolism of the psychotomimetic tryptamine derivative 5-methoxy-N,N-diisopropyltryptamine in humans: identification and quantification of its urinary metabolites. Drug Metab Dispos 34(2):281–287. doi: 10.1124/dmd.105.005835 PubMedGoogle Scholar
  93. Kamata T, Katagi M, Tsuchihashi H (2010) Metabolism and toxicological analyses of hallucinogenic tryptamine analogues being abused in Japan. Forensic Toxicol 28(1):1–8. doi: 10.1007/s11419-009-0087-9 Google Scholar
  94. Kanamori T, Kuwayama K, Tsujikawa K et al (2006) In vivo metabolism of 5-methoxy-N,N-diisopropyltryptamine in rat. J Health Sci 52(4):425–430Google Scholar
  95. Kaplan J, Mandel LR, Stillman R et al (1974) Blood and urine levels of N,N-dimethyltryptamine following administration of psychoactive dosages to human subjects. Psychopharmacologia 38(3):239–245PubMedGoogle Scholar
  96. Katagi M, Tsutsumi H, Miki A, Nakajima K, Tsuchihashi H (2002) Analysis of clandestine tablets of amphetamines and their related designer drugs encountered in recent Japan. Jpn J Forensic Toxicol 20:303–319Google Scholar
  97. Katz DP, Bhattacharya D, Bhattacharya S et al (2014) Synthetic cathinones: “a khat and mouse game”. Toxicol Lett 229(2):349–356. doi: 10.1016/j.toxlet.2014.06.020 PubMedGoogle Scholar
  98. Kikura-Hanajiri R, Hayashi M, Saisho K, Goda Y (2005) Simultaneous determination of nineteen hallucinogenic tryptamines/beta-calbolines and phenethylamines using gas chromatography-mass spectrometry and liquid chromatography-electrospray ionisation-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 825(1):29–37. doi: 10.1016/j.jchromb.2005.01.041 PubMedGoogle Scholar
  99. Kim H, Sablin SO, Ramsay RR (1997) Inhibition of monoamine oxidase A by beta-carboline derivatives. Arch Biochem Biophys 337(1):137–142. doi: 10.1006/abbi.1996.9771 PubMedGoogle Scholar
  100. Kjellgren A, Soussan C (2011) Heaven and hell—a phenomenological study of recreational use of 4-HO-MET in Sweden. J Psychoact Drugs 43(3):211–219Google Scholar
  101. Klette KL, Anderson CJ, Poch GK, Nimrod AC, ElSohly MA (2000) Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes. J Anal Toxicol 24(7):550–556PubMedGoogle Scholar
  102. Koerner J, Appel JB (1982) Psilocybin as a discriminative stimulus: lack of specificity in an animal behavior model for ‘hallucinogens’. Psychopharmacology 76(2):130–135PubMedGoogle Scholar
  103. Krebs KM, Geyer MA (1993) Behavioral characterization of alpha-ethyltryptamine, a tryptamine derivative with MDMA-like properties in rats. Psychopharmacology 113(2):284–287PubMedGoogle Scholar
  104. Lee S-F, Hsu J, Tsay W-I (2013) The trend of drug abuse in Taiwan during the years 1999 to 2011. J Food Drug Anal 21:390–396Google Scholar
  105. Leino M, Airaksinen MM (1985) Methoxyindoles of the retina. Med Biol 63(4):160–169PubMedGoogle Scholar
  106. Lessin AW, Long RF, Parkes MW (1965) Central Stimulant Actions of Alpha-Alkyl Substituted Tryptamines in Mice. Br J Pharmacol Chemother 24:49–67PubMedCentralPubMedGoogle Scholar
  107. Li JX, Rice KC, France CP (2008) Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane in rhesus monkeys. J Pharmacol Exp Ther 324(2):827–833. doi: 10.1124/jpet.107.130625 PubMedGoogle Scholar
  108. Manske R (1931) A synthesis of the methyltryptamines and some derivatives. Can J Res 5:592–600Google Scholar
  109. Marek GJ, Aghajanian GK (1996) LSD and the phenethylamine hallucinogen are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J Pharmacol Exp Ther 278(3):1373–1382PubMedGoogle Scholar
  110. Marona-Lewicka D, Thisted RA, Nichols DE (2005) Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology 180(3):427–435. doi: 10.1007/s00213-005-2183-9 PubMedGoogle Scholar
  111. Matsushima Y, Eguchi F, Kikukawa T, Matsuda T (2009) Historical overview of psychoactive mushrooms. Inflamm Regen 29(1):47–58Google Scholar
  112. Maxwell JC (2014) Psychoactive substances–some new, some old: a scan of the situation in the U.S. Drug Alcohol Depend 134:71–77. doi: 10.1016/j.drugalcdep.2013.09.011 PubMedGoogle Scholar
  113. McIlhenny EH, Riba J, Barbanoj MJ, Strassman R, Barker SA (2011) Methodology for and the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomed Chromatogr 25(9):970–984. doi: 10.1002/bmc.1551 PubMedGoogle Scholar
  114. McIlhenny EH, Riba J, Barbanoj MJ, Strassman R, Barker SA (2012) Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomed Chromatogr 26(3):301–313. doi: 10.1002/bmc.1657 PubMedGoogle Scholar
  115. McKenna DJ (2004) Clinical investigations of the therapeutic potential of ayahuasca: rationale and regulatory challenges. Pharmacol Ther 102(2):111–129. doi: 10.1016/j.pharmthera.2004.03.002 PubMedGoogle Scholar
  116. McKenna DJ, Towers GH, Abbott F (1984) Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and beta-carboline constituents of ayahuasca. J Ethnopharmacol 10(2):195–223PubMedGoogle Scholar
  117. McKenna DJ, Repke DB, Lo L, Peroutka SJ (1990) Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29(3):193–198PubMedGoogle Scholar
  118. Meatherall R, Sharma P (2003) Foxy, a designer tryptamine hallucinogen. J Anal Toxicol 27(5):313–317PubMedGoogle Scholar
  119. Metzner R (1998) Hallucinogenic drugs and plants in psychotherapy and shamanism. J Psychoact Drugs 30(4):333–341. doi: 10.1080/02791072.1998.10399709 Google Scholar
  120. Mittman SM, Geyer MA (1991) Dissociation of multiple effects of acute LSD on exploratory behavior in rats by ritanserin and propranolol. Psychopharmacology 105(1):69–76PubMedGoogle Scholar
  121. Monteiro MS, Bastos ML, de Pinho PG, Carvalho M (2013) Update on 1-benzylpiperazine (BZP) party pills. Arch Toxicol 87(6):929–947. doi: 10.1007/s00204-013-1057-x PubMedGoogle Scholar
  122. Moretti C, Gaillard Y, Grenand P, Bevalot F, Prevosto JM (2006) Identification of 5-hydroxy-tryptamine (bufotenine) in takini (Brosimumacutifolium Huber subsp. acutifolium C.C. Berg, Moraceae), a shamanic potion used in the Guiana Plateau. J Ethnopharmacol 106(2):198–202. doi: 10.1016/j.jep.2005.12.022 PubMedGoogle Scholar
  123. Muller AA (2004) New drugs of abuse update: foxy Methoxy. J Emerg Nurs 30(5):507–508. doi: 10.1016/j.jen.2004.07.037 PubMedGoogle Scholar
  124. Musselman ME, Hampton JP (2014) “Not for human consumption”: a review of emerging designer drugs. Pharmacotherapy 34(7):745–757. doi: 10.1002/phar.1424 PubMedGoogle Scholar
  125. Musshoff F, Daldrup T, Bonte W, Leitner A, Lesch OM (1996) Formaldehyde-derived tetrahydroisoquinolines and tetrahydro-beta-carbolines in human urine. J Chromatogr B Biomed Appl 683(2):163–176PubMedGoogle Scholar
  126. Nagai F, Nonaka R, Satoh Hisashi Kamimura K (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559(2–3):132–137. doi: 10.1016/j.ejphar.2006.11.075 PubMedGoogle Scholar
  127. Narasimhachari N, Heller B, Spaide J et al (1971) Urinary studies of schizophrenics and controls. Biol Psychiatry 3(1):9–20PubMedGoogle Scholar
  128. Narimatsu S, Yonemoto R, Saito K et al (2006) Oxidative metabolism of 5-methoxy-N,N-diisopropyltryptamine (Foxy) by human liver microsomes and recombinant cytochrome P450 enzymes. Biochem Pharmacol 71(9):1377–1385. doi: 10.1016/j.bcp.2006.01.015 PubMedGoogle Scholar
  129. Narimatsu S, Yonemoto R, Masuda K et al (2008) Oxidation of 5-methoxy-N,N-diisopropyltryptamine in rat liver microsomes and recombinant cytochrome P450 enzymes. Biochem Pharmacol 75(3):752–760. doi: 10.1016/j.bcp.2007.09.019 PubMedGoogle Scholar
  130. Nelson ME, Bryant SM, Aks SE (2014) Emerging drugs of abuse. Emerg Med Clin N Am 32(1):1–28. doi: 10.1016/j.emc.2013.09.001 Google Scholar
  131. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101(2):131–181. doi: 10.1016/j.pharmthera.2003.11.002 PubMedGoogle Scholar
  132. Nichols DE (2013) Serotonin, and the past and future of LSD. MAPS Bull 23(1):20–23Google Scholar
  133. Ott J (1999) Pharmahuasca: human pharmacology of oral DMT plus harmine. J Psychoact Drugs 31(2):171–177. doi: 10.1080/02791072.1999.10471741 Google Scholar
  134. Ott J (2001a) Pharmanopo-psychonautics: human intranasal, sublingual, intrarectal, pulmonary and oral pharmacology of bufotenine. J Psychoact Drugs 33(3):273–281. doi: 10.1080/02791072.2001.10400574 Google Scholar
  135. Ott J (2001b) Pharmepena-psychonautics: human intranasal, sublingual and oral pharmacology of 5-methoxy-N,N-dimethyl-tryptamine. J Psychoact Drugs 33(4):403–407. doi: 10.1080/02791072.2001.10399925 Google Scholar
  136. Ouagazzal A, Grottick AJ, Moreau J, Higgins GA (2001) Effect of LSD on prepulse inhibition and spontaneous behavior in the rat. A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology 25(4):565–575. doi: 10.1016/S0893-133X(01)00282-2 PubMedGoogle Scholar
  137. Peden NR, Bissett AF, Macaulay KE, Crooks J, Pelosi AJ (1981) Clinical toxicology of “magic mushroom” ingestion. Postgrad Med J 57(671):543–545PubMedCentralPubMedGoogle Scholar
  138. Pierce PA, Peroutka SJ (1989) Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex. Psychopharmacology 97(1):118–122PubMedGoogle Scholar
  139. Poch GK, Klette KL, Hallare DA et al (1999) Detection of metabolites of lysergic acid diethylamide (LSD) in human urine specimens: 2-oxo-3-hydroxy-LSD, a prevalent metabolite of LSD. J Chromatogr B Biomed Sci Appl 724(1):23–33PubMedGoogle Scholar
  140. Poch GK, Klette KL, Anderson C (2000) The quantitation of 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) in human urine specimens, a metabolite of LSD: comparative analysis using liquid chromatography-selected ion monitoring mass spectrometry and liquid chromatography-ion trap mass spectrometry. J Anal Toxicol 24(3):170–179PubMedGoogle Scholar
  141. Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8(1):33–42. doi: 10.1007/s13181-011-0193-z PubMedCentralPubMedGoogle Scholar
  142. Ramsey J, Dargan PI, Smyllie M et al (2010) Buying ‘legal’ recreational drugs does not mean that you are not breaking the law. QJM 103(10):777–783. doi: 10.1093/qjmed/hcq132 PubMedGoogle Scholar
  143. Reuschel SA, Eades D, Foltz RL (1999) Recent advances in chromatographic and mass spectrometric methods for determination of LSD and its metabolites in physiological specimens. J Chromatogr B Biomed Sci Appl 733(1–2):145–159PubMedGoogle Scholar
  144. Riba J, McIlhenny EH, Valle M, Bouso JC, Barker SA (2012) Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca. Drug Test Anal 4(7–8):610–616. doi: 10.1002/dta.1344 PubMedGoogle Scholar
  145. Riba J, McIlhenny EH, Bouso JC, Barker SA (2014) Metabolism and urinary disposition of N,N-dimethyltryptamine after oral and smoked administration: a comparative study. Drug Test Anal. doi: 10.1002/dta.1685 PubMedGoogle Scholar
  146. Rivier L, Lindgren J-E (1972) “Ayahuasca”, the South American hallucinogenic drink: an ethnobotanical and chemical investigation. Econ Bot 26(2):101–129. doi: 10.1007/BF02860772 Google Scholar
  147. Rogawski MA, Aghajanian GK (1981) Serotonin autoreceptors on dorsal raphe neurons: structure-activity relationships of tryptamine analogs. J Neurosci 1(10):1148–1154PubMedGoogle Scholar
  148. Rothlin E (1957) Pharmacology of lysergic acid diethylamide and some of its related compounds. J Pharm Pharmacol 9(9):569–587PubMedGoogle Scholar
  149. Sabol KE, Lew R, Richards JB, Vosmer GL, Seiden LS (1996) Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. Part I: synaptosomal uptake and tissue concentrations. J Pharmacol Exp Ther 276(2):846–854PubMedGoogle Scholar
  150. Sanders B, Lankenau SE, Bloom JJ, Hathazi D (2008) “Research chemicals”: tryptamine and phenethylamine use among high-risk youth. Subst Use Misuse 43(3–4):389–402. doi: 10.1080/00952990701202970 PubMedCentralPubMedGoogle Scholar
  151. Scanzello CR, Hatzidimitriou G, Martello AL, Katz JL, Ricaurte GA (1993) Serotonergic recovery after (±)3,4-(methylenedioxy) methamphetamine injury: observations in rats. J Pharmacol Exp Ther 264(3):1484–1491PubMedGoogle Scholar
  152. Schmidt MM, Sharma A, Schifano F, Feinmann C (2011) “Legal highs” on the net-Evaluation of UK-based Websites, products and product information. Forensic Sci Int 206(1–3):92–97. doi: 10.1016/j.forsciint.2010.06.030 PubMedGoogle Scholar
  153. Schreiber R, Brocco M, Millan MJ (1994) Blockade of the discriminative stimulus effects of by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. Eur J Pharmacol 264(1):99–102PubMedGoogle Scholar
  154. Schwartz RH, Smith DE (1988) Hallucinogenic mushrooms. Clin Pediatr 27(2):70–73Google Scholar
  155. Seely KA, Lapoint J, Moran JH, Fattore L (2012) Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry 39(2):234–243. doi: 10.1016/j.pnpbp.2012.04.017 PubMedCentralPubMedGoogle Scholar
  156. Sheard MH, Astrachan DI, Davis M (1977) The effect of D-lysergic acid diethylamide (LSD) upon shock elicited fighting in rats. Life Sci 20(3):427–430PubMedGoogle Scholar
  157. Shen HW, Jiang XL, Winter JC, Yu AM (2010) Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metab 11(8):659–666PubMedCentralPubMedGoogle Scholar
  158. Shimizu E, Watanabe H, Kojima T et al (2007) Combined intoxication with methylone and 5-MeO-MIPT. Prog Neuropsychopharmacol Biol Psychiatry 31(1):288–291. doi: 10.1016/j.pnpbp.2006.06.012 PubMedGoogle Scholar
  159. Shulgin AT, Shulgin A (1997) TIHKAL: the continuation. Transform, BerkeleyGoogle Scholar
  160. Siddik ZH, Barnes RD, Dring LG, Smith RL, Williams RT (1979) The fate of lysergic acid DI[14C]ethylamide ([14C]LSD) in the rat, guinea pig and rhesus monkey and of [14C]iso-LSD in rat. Biochem Pharmacol 28(20):3093–3101PubMedGoogle Scholar
  161. Sitaram BR, McLeod WR (1990) Observations on the metabolism of the psychotomimetic indolealkylamines: implications for future clinical studies. Biol Psychiatry 28(10):841–848PubMedGoogle Scholar
  162. Sitaram BR, Lockett L, Blackman GL, McLeod WR (1987a) Urinary excretion of 5-methoxy-N,N-dimethyltryptamine, N,N-dimethyltryptamine and their N-oxides in the rat. Biochem Pharmacol 36(13):2235–2237PubMedGoogle Scholar
  163. Sitaram BR, Lockett L, Talomsin R, Blackman GL, McLeod WR (1987b) In vivo metabolism of 5-methoxy-N,N-dimethyltryptamine and N,N-dimethyltryptamine in the rat. Biochem Pharmacol 36(9):1509–1512PubMedGoogle Scholar
  164. Skelton MR, Schaefer TL, Herring NR, Grace CE, Vorhees CV, Williams MT (2009) Comparison of the developmental effects of 5-methoxy-N,N-diisopropyltryptamine (Foxy) to (±)-3,4-methylenedioxymethamphetamine (ecstasy) in rats. Psychopharmacology 204(2):287–297. doi: 10.1007/s00213-009-1459-x PubMedCentralPubMedGoogle Scholar
  165. Sklerov JH, Magluilo J Jr, Shannon KK, Smith ML (2000) Liquid chromatography-electrospray ionization mass spectrometry for the detection of lysergide and a major metabolite, 2-oxo-3-hydroxy-LSD, in urine and blood. J Anal Toxicol 24(7):543–549PubMedGoogle Scholar
  166. Sklerov J, Levine B, Moore KA, King T, Fowler D (2005) A fatal intoxication following the ingestion of 5-methoxy-N,N-dimethyltryptamine in an ayahuasca preparation. J Anal Toxicol 29(8):838–841PubMedGoogle Scholar
  167. Smith RL, Canton H, Barrett RJ, Sanders-Bush E (1998) Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors. Pharmacol Biochem Behav 61(3):323–330PubMedGoogle Scholar
  168. Smith RL, Barrett RJ, Sanders-Bush E (1999) Mechanism of tolerance development to 2,5-dimethoxy-4-iodoamphetamine in rats: down-regulation of the 5-HT2A, but not 5-HT2C, receptor. Psychopharmacology 144(3):248–254PubMedGoogle Scholar
  169. Smith RL, Barrett RJ, Sanders-Bush E (2003) Discriminative stimulus properties of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(±)DOI] in C57BL/6J mice. Psychopharmacology 166(1):61–68. doi: 10.1007/s00213-002-1252-6 PubMedGoogle Scholar
  170. Smith DE, Raswyck GE, Davidson LD (2014) From Hofmann to the Haight Ashbury, and into the future: the past and potential of lysergic acid diethylamide. J Psychoact Drugs 46(1):3–10. doi: 10.1080/02791072.2014.873684 Google Scholar
  171. Smolinske SC, Rastogi R, Schenkel S (2005) Foxy methoxy: a new drug of abuse. J Med Toxicol 1(1):22–25PubMedGoogle Scholar
  172. Sticht G, Kaferstein H (2000) Detection of psilocin in body fluids. Forensic Sci Int 113(1–3):403–407PubMedGoogle Scholar
  173. Strassman RJ (2001) DMT: the spirit molecule: a doctor's revolutionary research into the biology of near-death and mystical experiences. Park Street Press, RochesterGoogle Scholar
  174. Strassman RJ, Qualls CR (1994) Dose-response study of N,N-dimethyltryptamine in humans. I. Neuroendocrine, autonomic, and cardiovascular effects. Arch Gen Psychiatry 51(2):85–97PubMedGoogle Scholar
  175. Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994) Dose-response study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Arch Gen Psychiatry 51(2):98–108PubMedGoogle Scholar
  176. Strassman RJ, Qualls CR, Berg LM (1996) Differential tolerance to biological and subjective effects of four closely spaced doses of N,N-dimethyltryptamine in humans. Biol Psychiatry 39(9):784–795. doi: 10.1016/0006-3223(95)00200-6 PubMedGoogle Scholar
  177. Szara S (1956) Dimethyltryptamin: its metabolism in man; the relation to its psychotic effect to the serotonin metabolism. Experientia 12(11):441–442PubMedGoogle Scholar
  178. Taljemark J, Johansson BA (2012) Drug-induced acute psychosis in an adolescent first-time user of 4-HO-MET. Eur Child Adolesc Psychiatry 21(9):527–528. doi: 10.1007/s00787-012-0282-9 PubMedGoogle Scholar
  179. Tanaka E, Kamata T, Katagi M, Tsuchihashi H, Honda K (2006) A fatal poisoning with 5-methoxy-N,N-diisopropyltryptamine, Foxy. Forensic Sci Int 163(1–2):152–154. doi: 10.1016/j.forsciint.2005.11.026 PubMedGoogle Scholar
  180. Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94(2):213–216PubMedGoogle Scholar
  181. Tsuchiya H, Yamada K, Tajima K, Hayashi T (1996) Urinary excretion of tetrahydro-beta-carbolines relating to ingestion of alcoholic beverages. Alcohol Alcohol 31(2):197–203PubMedGoogle Scholar
  182. Turner DM (1994) The essential psychadelic handbook. Panther Press, San FranciscoGoogle Scholar
  183. Twarog BM, Page IH (1953) Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol 175(1):157–161PubMedGoogle Scholar
  184. Tyls F, Palenicek T, Horacek J (2014) Psilocybin—summary of knowledge and new perspectives. Eur Neuropsychopharmacol 24(3):342–356. doi: 10.1016/j.euroneuro.2013.12.006 PubMedGoogle Scholar
  185. Ujvary I (2014) Psychoactive natural products: overview of recent developments. Ann Ist Super Sanita 50(1):12–27. doi: 10.4415/ANN_14_01_04 PubMedGoogle Scholar
  186. Valente MJ, de Pinho PG, Bastos ML, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88(1):15–45. doi: 10.1007/s00204-013-1163-9 PubMedGoogle Scholar
  187. Vorce SP, Sklerov JH (2004) A general screening and confirmation approach to the analysis of designer tryptamines and phenethylamines in blood and urine using GC–EI–MS and HPLC-electrospray-MS. J Anal Toxicol 28(6):407–410PubMedGoogle Scholar
  188. Wada K, Funada M, Shimane T (2013) Current status of substance abuse and HIV infection in Japan. J Food Drug Anal 21(4):S33–S36. doi: 10.1016/j.jfda.2013.09.030 PubMedCentralPubMedGoogle Scholar
  189. Walters JK, Sheard MH, Davis M (1978) Effects of N,N-dimethyltryptamine (DMT) and 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) on shock elicited fighting in rats. Pharmacol Biochem Behav 9(1):87–90PubMedGoogle Scholar
  190. Weil AT, Davis W (1994) Bufo alvarius: a potent hallucinogen of animal origin. J Ethnopharmacol 41(1–2):1–8PubMedGoogle Scholar
  191. Wieland H, Konz W, Mittasch H (1934) Die konstitution von Bufotenin und Bufotenidin. Über kröten-Giftstoffe. VII. Justus Liebigs Ann Chem 513(1):1–25Google Scholar
  192. Williams MT, Herring NR, Schaefer TL et al (2007) Alterations in body temperature, corticosterone, and behavior following the administration of 5-methoxy-diisopropyltryptamine (‘foxy’) to adult rats: a new drug of abuse. Neuropsychopharmacology 32(6):1404–1420. doi: 10.1038/sj.npp.1301232 PubMedGoogle Scholar
  193. Wilson JM, McGeorge F, Smolinske S, Meatherall R (2005) A foxy intoxication. Forensic Sci Int 148(1):31–36. doi: 10.1016/j.forsciint.2004.04.017 PubMedGoogle Scholar
  194. Winstock AR, Kaar S, Borschmann R (2014) Dimethyltryptamine (DMT): prevalence, user characteristics and abuse liability in a large global sample. J Psychopharmacol 28(1):49–54. doi: 10.1177/0269881113513852 PubMedGoogle Scholar
  195. Winter JC, Filipink RA, Timineri D, Helsley SE, Rabin RA (2000) The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors. Pharmacol Biochem Behav 65(1):75–82PubMedGoogle Scholar
  196. Winter JC, Eckler JR, Rabin RA (2004) Serotonergic/glutamatergic interactions: the effects of mGlu2/3 receptor ligands in rats trained with LSD and PCP as discriminative stimuli. Psychopharmacology 172(2):233–240. doi: 10.1007/s00213-003-1636-2 PubMedGoogle Scholar
  197. Winter JC, Rice KC, Amorosi DJ, Rabin RA (2007) Psilocybin-induced stimulus control in the rat. Pharmacol Biochem Behav 87(4):472–480. doi: 10.1016/j.pbb.2007.06.003 PubMedCentralPubMedGoogle Scholar
  198. Wolbach AB Jr, Isbell H, Miner EJ (1962) Cross tolerance between mescaline and LSD-25, with a comparison of the mescaline and LSD reactions. Psychopharmacologia 3:1–14PubMedGoogle Scholar
  199. Wurst M, Kysilka R, Flieger M (2002) Psychoactive tryptamines from basidiomycetes. Folia Microbiol 47(1):3–27Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ana Margarida Araújo
    • 1
  • Félix Carvalho
    • 1
  • Maria de Lourdes Bastos
    • 1
  • Paula Guedes de Pinho
    • 1
  • Márcia Carvalho
    • 1
    • 2
  1. 1.UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
  2. 2.FP-ENAS, CEBIMEDFundação Ensino e Cultura Fernando PessoaPortoPortugal

Personalised recommendations