Archives of Toxicology

, Volume 89, Issue 8, pp 1371–1381 | Cite as

Bisphenol A modulates colorectal cancer protein profile and promotes the metastasis via induction of epithelial to mesenchymal transitions

  • Zhuo-Jia Chen
  • Xiang-Ling Yang
  • Hao Liu
  • Wei Wei
  • Kun-Shui Zhang
  • Hong-Bin Huang
  • John P. Giesy
  • Huan-Liang Liu
  • Jun Du
  • Hong-Sheng Wang
Genotoxicity and Carcinogenicity


More and more evidences indicate that endocrine disruptor chemicals such as bisphenol A (BPA) can act as carcinogens and enhance susceptibility to tumorigenesis. Although the gut is in direct contact with orally ingested BPA, effects of BPA on occurrence and development of colorectal cancer remain an unexplored endpoint. Colorectal cancer SW480 cells treated with nanomolar (10−8 M) or greater (10−5 M) concentrations of BPA were compared with responses of a control group. Proteomic study revealed that more than 56 proteins were modulated following exposure to BPA, which are relevant to structure, motility and proliferation of cells, production of ATP, oxidative stress, and protein metabolism. Further studies revealed that BPA increased migration and invasion and triggered transformations from epithelial to mesenchymal transitions (EMTs) of colorectal cancer cells, which was characterized by acquiring mesenchymal spindle-like morphology and increasing the expression of N-cadherin with a concomitant decrease of E-cadherin. Accordingly, BPA treatment increased the expression of transcription factor Snail. Furthermore, signal AKT/GSK-3β-mediated stabilization of Snail is involved during BPA-induced EMT of colon cancer cells. Our study first demonstrated that the xenoestrogen BPA at nanomolar and greater concentrations modulates the protein profiles and promotes the metastasis of colorectal cancer cells via induction of EMT.


Colorectal cancer BPA EMT Proteomic Tumorigenesis Migration 



Bisphenol A


Colorectal cancer


Dimethyl sulfoxide






Endocrine disruptor chemicals


Epithelial to mesenchymal transitions


Estrogen-related receptor


Estrogen receptor α/β


Fetal bovine serum




G-protein-coupled estrogen receptor


Heat-shock protein 27






Zona occludin-1



This research was supported by the National Natural Science Foundation of China (Grant Nos. 31101071 and 81302317), the Fundamental Research Funds for the Central Universities (Sun Yat-sen University) (No. 12ykpy09), the Opening Project of Guangdong Provincial Key Laboratory of New Drug Design and Evaluation (No. 2011A060901014-007), the National Basic Research Program of China (973 Program, No. 2011CB9358003), the Science and Technology Planning Project of Guangdong Province, China (No. 2012B031500005), and the Seed Collaborative Research Fund from the State Key Laboratory in Marine Pollution (SCRF0003).

Supplementary material

204_2014_1301_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1124 kb)


  1. Andersson H, Brittebo E (2012) Proangiogenic effects of environmentally relevant levels of bisphenol A in human primary endothelial cells. Arch Toxicol 86(3):465–474PubMedCrossRefGoogle Scholar
  2. Barros RP, Gustafsson JA (2011) Estrogen receptors and the metabolic network. Cell Metab 14(3):289–299PubMedCrossRefGoogle Scholar
  3. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94:29–86PubMedCrossRefGoogle Scholar
  4. Betancourt AM, Mobley JA, Russo J, Lamartiniere CA (2010) Proteomic analysis in mammary glands of rat offspring exposed in utero to bisphenol A. J Proteomic 73(6):1241–1253CrossRefGoogle Scholar
  5. Betancourt AM, Eltoum IA, Desmond RA, Russo J, Lamartiniere CA (2011) In utero exposure to bisphenol A shifts the window of susceptibility for mammary carcinogenesis in the rat. Environ Health Perspect 118(11):1614–1619CrossRefGoogle Scholar
  6. Braniste V, Jouault A, Gaultier E, Polizzi A, Buisson-Brenac C, Leveque M, Martin PG, Theodorou V, Fioramonti J, Houdeau E (2010) Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats. Proc Natl Acad Sci 107(1):448–453PubMedCentralPubMedCrossRefGoogle Scholar
  7. Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N (1995) Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect 103(6):608–612PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cano A, Peinado H, Olmeda D (2007) Snail, ZEB and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428PubMedCrossRefGoogle Scholar
  9. Chen J, Iverson D (2012) Estrogen in obesity-associated colon cancer: friend or foe? Protecting postmenopausal women but promoting late-stage colon cancer. Cancer Cause Control 23(11):1767–1773CrossRefGoogle Scholar
  10. Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66(17):8319–8326PubMedCrossRefGoogle Scholar
  11. Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9(6):464–477PubMedCrossRefGoogle Scholar
  12. Cox AG, Winterbourn CC, Hampton MB (2010) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 425(2):313–325CrossRefGoogle Scholar
  13. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18(1):54–61PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dekant W, Voelkel W (2008) Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol Appl Pharmacol 228(1):114–134PubMedCrossRefGoogle Scholar
  15. Derouiche S, Warnier M, Mariot P, Gosset P, Mauroy B, Bonnal JL, Slomianny C, Delcourt P, Prevarskaya N, Roudbaraki M (2013) Bisphenol A stimulates human prostate cancer cell migration remodelling of calcium signalling. Springerplus 2(1):54PubMedCentralPubMedCrossRefGoogle Scholar
  16. Di Fiore B, Ciciarello M, Lavia P (2004) Mitotic functions of the Ran GTPase network: the importance of being in the right place at the right time. Cell Cycle 3(3):305–313PubMedCrossRefGoogle Scholar
  17. Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, Munoz-de-Toro M (2007) Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect 115(1):80–86PubMedCentralPubMedCrossRefGoogle Scholar
  18. Ge LC, Chen ZJ, Liu HY, Zhang KS, Liu H, Huang HB, Zhang G, Wong CK, Giesy JP, Du J, Wang HS (2014) Involvement of activating ERK1/2 through G protein coupled receptor 30 and estrogen receptor alpha/beta in low doses of bisphenol A promoting growth of Sertoli TM4 cells. Toxicol Lett 226(1):81–89PubMedCrossRefGoogle Scholar
  19. Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P, Maghuin-Rogister G, Pironnet AM, Pussemier L, Scippo ML, Van Loco J, Covaci A (2012) A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50(10):3725–3740PubMedCrossRefGoogle Scholar
  20. Jasperson KW, Tuohy TM, Neklason DW, Burt RW (2010) Hereditary and familial colon cancer. Gastroenterology 138(6):2044–2058PubMedCentralPubMedCrossRefGoogle Scholar
  21. Jenkins S, Raghuraman N, Eltoum I, Carpenter M, Russo J, Lamartiniere CA (2009) Oral exposure to bisphenol a increases dimethylbenzanthracene-induced mammary cancer in rats. Environ Health Perspect 117(6):910–915PubMedCentralPubMedCrossRefGoogle Scholar
  22. Jiang GM, Wang HS, Zhang F, Zhang KS, Liu ZC, Fang R, Wang H, Cai SH, Du J (2013) Histone deacetylase inhibitor induction of epithelial–mesenchymal transitions via up-regulation of Snail facilitates cancer progression 1833. BBA-Mol Cell Res 3:663–671Google Scholar
  23. Kang JH, Kondo F, Katayama Y (2006) Human exposure to bisphenol A. Toxicology 226(2–3):79–89PubMedCrossRefGoogle Scholar
  24. Kennelly R, Kavanagh DO, Hogan AM, Winter DC (2008) Oestrogen and the colon: potential mechanisms for cancer prevention. Lancet Oncol 9(4):385–391PubMedCrossRefGoogle Scholar
  25. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15(3):195–206PubMedCrossRefGoogle Scholar
  26. Le HH, Carlson EM, Chua JP, Belcher SM (2008) Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett 176(2):149–156PubMedCentralPubMedCrossRefGoogle Scholar
  27. Lokman NA, Ween MP, Oehler MK, Ricciardelli C (2011) The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron 4(2):199–208PubMedCentralPubMedCrossRefGoogle Scholar
  28. Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271(28):16510–16514PubMedCrossRefGoogle Scholar
  29. Papaconstantinou AD, Fisher BR, Umbreit TH, Goering PL, Lappas NT, Brown KM (2001) Effects of beta-estradiol and bisphenol A on heat shock protein levels and localization in the mouse uterus are antagonized by the antiestrogen ICI 182,780. Toxicol Sci 63(2):173–180PubMedCrossRefGoogle Scholar
  30. Pupo M, Pisano A, Lappano R, Santolla MF, De Francesco EM, Abonante S, Rosano C, Maggiolini M (2012) Bisphenol A induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ Health Perspect 120(8):1177–1182PubMedCentralPubMedCrossRefGoogle Scholar
  31. Salian S, Doshi T, Vanage G (2011) Perinatal exposure of rats to bisphenol A affects fertility of male offspring—an overview. Reprod Toxicol 31(3):359–362PubMedCrossRefGoogle Scholar
  32. Sheehan KM, Gulmann C, Eichler GS, Weinstein JN, Barrett HL, Kay EW, Conroy RM, Liotta LA, Petricoin EF 3rd (2008) Signal pathway profiling of epithelial and stromal compartments of colonic carcinoma reveals epithelial–mesenchymal transition. Oncogene 27(3):323–331PubMedCrossRefGoogle Scholar
  33. Sheng ZG, Zhu BZ (2011) Low concentrations of bisphenol A induce mouse spermatogonial cell proliferation by G protein-coupled receptor 30 and estrogen receptor-alpha. Environ Health Perspect 119(12):1775–1780PubMedCentralPubMedCrossRefGoogle Scholar
  34. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29CrossRefGoogle Scholar
  35. Thanner F, Sutterlin MW, Kapp M, Rieger L, Morr AK, Kristen P, Dietl J, Gassel AM, Muller T (2005) Heat shock protein 27 is associated with decreased survival in node-negative breast cancer patients. Anticancer Res 25(3A):1649–1653PubMedGoogle Scholar
  36. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007a) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177PubMedCrossRefGoogle Scholar
  37. Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM (2007b) Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology 148(1):116–127PubMedCentralPubMedCrossRefGoogle Scholar
  38. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJR, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118(8):1055–1070PubMedCentralPubMedCrossRefGoogle Scholar
  39. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033CrossRefGoogle Scholar
  40. Vignjevic D, Schoumacher M, Gavert N, Janssen KP, Jih G, Lae M, Louvard D, Ben-Ze’ev A, Robine S (2007) Fascin, a novel target of beta-Catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res 67(14):6844–6853PubMedCrossRefGoogle Scholar
  41. Vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA (2012) The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol 354(1–2):74–84PubMedCentralPubMedCrossRefGoogle Scholar
  42. Wang RE (2011) Targeting heat shock proteins 70/90 and proteasome for cancer therapy. Curr Med Chem 18(27):4250–4264PubMedCrossRefGoogle Scholar
  43. Wang HS, Chen ZJ, Zhang G, Ou XL, Yang XL, Wong CKC, Giesy JP, Du J, Chen SY (2012) A novel micro-linear vector for in vitro and in vivo gene delivery and its application for EBV positive tumors. PLoS ONE 7(10):e47159PubMedCentralPubMedCrossRefGoogle Scholar
  44. Wang H, Wang HS, Zhou BH, Li CL, Zhang F, Wang XF, Zhang G, Bu XZ, Cai SH, Du J (2013) Epithelial-mesenchymal transition (EMT) induced by TNF-alpha requires AKT/GSK-3beta-mediated stabilization of snail in colorectal cancer. PLoS ONE 8(2):e56664PubMedCentralPubMedCrossRefGoogle Scholar
  45. Ye Y, Xiao Y, Wang W, Yearsley K, Gao J, Shetuni B, Barsky S (2010) ERα signaling through slug regulates E-cadherin and EMT. Oncogene 29(10):1451–1462PubMedCrossRefGoogle Scholar
  46. Zhu H, Zheng J, Xiao X, Zheng S, Dong K, Liu J, Wang Y (2010) Environmental endocrine disruptors promote invasion and metastasis of SK–N–SH human neuroblastoma cells. Oncol Rep 23(1):129–139PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Pharmacy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat-sen University Cancer CenterGuangzhouChina
  2. 2.Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical SciencesSun Yat-sen UniversityGuangzhouChina
  3. 3.Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Institute of Human Virology, Key Laboratory of Tropical Disease Control (Ministry of Education)Sun Yat-sen UniversityGuangzhouChina
  4. 4.Cancer Research Institute and Cancer HospitalGuangzhou Medical UniversityGuangzhouChina
  5. 5.Department of Pharmacy, Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
  6. 6.Department of Veterinary Biomedical Sciences, Toxicological CenterUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations