Skip to main content
Log in

Human metabolism of Δ3-carene and renal elimination of Δ3-caren-10-carboxylic acid (chaminic acid) after oral administration

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

We studied the human in vivo metabolism of Δ3-carene (CRN), a natural monoterpene which commonly occurs in the human environment. Four healthy human volunteers were orally exposed to a single dose of 10 mg CRN. Each volunteer gave one urine sample before administration and subsequently collected each urine sample within 24 h after administration. The concentration of the proposed CRN metabolites Δ3-caren-10-ol (CRN-10-OH), Δ3-caren-10-carboxylic acid (chaminic acid, CRN-10-COOH), and Δ3-caren-3,4-diol (CRN-3,4-OH) were determined using a very specific and sensitive GC–MS/MS procedure. Other CRN metabolites were investigated using GC–PCI–MS Q1 scan analyses. CRN-10-COOH was detected in each urine sample with maximum concentration (113.0–1,172.9 µg L−1) 2–3 h after administration, whereas CRN-10-OH and CRN-3,4-OH were not detected in any of the samples. The renal excretion kinetics of CRN-10-COOH showed an elimination half-life of about 3 h. The cumulative excretion of CRN-10-COOH within 24 h after exposure correlated with about 2 % of the applied dose. The GC–PCI–MS Q1 scan analysis indicated several additional human CRN metabolites; thereof, six spectra enabled the prediction of the corresponding chemical structure. The results of the study indicate that CRN-10-COOH is a relevant product of the human in vivo metabolism of CRN. The oxidation of its allylic methyl group proceeds until the acidic structure without interruption. Thus, the generation of the alcoholic intermediate appeared to be the rate-determining step of this metabolic route. Nevertheless, the proportion of CRN-10-COOH in the CRN metabolism is low, and other oxidative metabolites are likely. This hypothesis was confirmed by the discovery of additional human CRN metabolites, whose predicted chemical structures fit in with further oxidative products of CRN metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brown HC, Suzuki A (1967) Hydroboration of Terpenes. IV. Hydroboration of (+)-3-carene (Δ3-carene). Configuration assignments for the 4-caranols and 4-caranones. An unusual stability of 4-isocaranone with a cis relationship of the methyl and gem-dimethyl groups. J Am Chem Soc 89(8):1933–1941. doi:10.1021/ja00984a031

    Article  CAS  Google Scholar 

  • Chen H, Chan KK (1997) Synthesis of deuterium labeled perillyl alcohol and dual C-13 and deuterium labeled perillic acid, major metabolites of d-limonene. J Labelled Comp Radiopharm 39(5):369–377

    Article  CAS  Google Scholar 

  • Crowell PL, Elson CE, Bailey HH, Elegbede A, Haag JD, Gould MN (1994) Human metabolism of the experimental cancer therapeutic agent d-limonene. Cancer Chemother Pharmacol 35(1):31–37. doi:10.1007/s002800050189

    Article  CAS  PubMed  Google Scholar 

  • DIN32645 (2008) DIN 32645: chemical analysis—decision limit, detection limit and determination limit under repeatability conditions—terms, methods, evaluation. Beuth Verlag, Berlin

    Google Scholar 

  • Duisken M, Benz D, Peiffer TH, Bloemeke B, Hollender J (2005) Metabolism of delta 3-carene by human cytochrome P450 enzymes: identification and characterization of two new metabolites. Curr Drug Metabol 6(6):593–601

    Article  CAS  Google Scholar 

  • Falk A, Lof A, Hagberg M, Hjelm EW, Wang Z (1991) Human exposure to 3-carene by inhalation: toxicokinetics, effects on pulmonary function and occurrence of irritative and CNS symptoms. Toxicol Appl Pharmacol 110(2):198–205

    Article  CAS  PubMed  Google Scholar 

  • Frąckowiak B, Ochalik K, Białońska A, Ciunik Z, Wawrzeńczyk C, Lochyński S (2006) Stereochemistry of terpene derivatives. Part 5: synthesis of chiral lactones fused to a carane system—insect feeding deterrents. Tetrahedron Asymmetry 17(1):124–129

    Article  Google Scholar 

  • Harrison SP, Morfopoulos C, Dani KGS et al (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197(1):49–57. doi:10.1111/nph.12021

    Article  CAS  PubMed  Google Scholar 

  • Hyttinen M, Masalin-Weijo M, Kalliokoski P, Pasanen P (2010) Comparison of VOC emissions between air-dried and heat-treated Norway spruce (Picea abies), Scots pine (Pinus sylvesteris) and European aspen (Populus tremula) wood. Atmos Environ 44(38):5028–5033. doi:10.1016/j.atmosenv.2010.07.018

    Article  CAS  Google Scholar 

  • Ishida T (2005) Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells. Chem Biodivers 2(5):569–590

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Asakawa Y, Okano M, Aratani T (1977) Biotransformation of terpenoids in mammal. I. Biotransformation of 3-carene and related compounds in rabbits. Tetrahedron Lett 18(28):2437–2440. doi:10.1016/S0040-4039(01)83787-4

    Article  Google Scholar 

  • Ishida T, Asakawa Y, Takemoto T, Aratani T (1981) Terpenoids biotransformation in mammals III: biotransformation of α-pinene, β-pinene, pinane, 3-carene, carane, myrcene, and p-cymene in rabbits. J Pharm Sci 70(4):406–415. doi:10.1002/jps.2600700417

    Article  CAS  PubMed  Google Scholar 

  • Johansson A, Lundborg M (1997) Effects of low concentrations of 3-carene on alveolar macrophages in vitro. Toxicology 120(2):99–104

    Article  CAS  PubMed  Google Scholar 

  • Kasanen JP, Pasanen AL, Pasanen P, Liesivuori J, Kosma VM, Alarie Y (1999) Evaluation of sensory irritation of Δ3-carene and turpentine, and acceptable levels of monoterpenes in occupational and indoor environment. J Toxicol Environ Health Part A 57(2):89–114

    Article  CAS  PubMed  Google Scholar 

  • Kassam JP, Tang BK, Kadar D, Kalow W (1989) In vitro studies of human liver alcohol dehydrogenase variants using a variety of substrates. Drug Metabol Dispos 17(5):567–572

    CAS  Google Scholar 

  • Kodama R, Yano T, Furukawa K, Noda K, Ide H (1976) Studies on the metabolism of d-Limonene (p-mentha-1, 8-diene). IV Isolation and characterization of new metabolites and species differences in metabolism. Xenobiotica 6(6):377–389

    Article  CAS  PubMed  Google Scholar 

  • Król S, Namieśnik J, Zabiegała B (2014) α-Pinene, 3-carene and d-limonene in indoor air of Polish apartments: the impact on air quality and human exposure. Sci Total Environ 468–469:985–995. doi:10.1016/j.scitotenv.2013.08.099

    Article  PubMed  Google Scholar 

  • Lanne B, Schlyter F, Byers J et al (1987) Differences in attraction to semiochemicals present in sympatric pine shoot beetles, Tomicus minor and T. piniperda. J Chem Ecol 13(5):1045–1067. doi:10.1007/bf01020537

    Article  CAS  PubMed  Google Scholar 

  • Lee H-B (1988) Perfluoro and chloro amide derivatives of aniline and chloroanilines: a comparison of their formation and gas chromatographic determination by mass selective and electron-capture detectors. J Chromatogr A 457:267–278. doi:10.1016/S0021-9673(01)82074-4

    Article  CAS  Google Scholar 

  • Liljelind I, Rappaport S, Eriksson K et al (2003) Exposure assessment of monoterpenes and styrene: a comparison of air sampling and biomonitoring. Occup Environ Med 60(8):599–603. doi:10.1136/oem.60.8.599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindgren BO, Nilsson T, Husebye S, Mikalsen Ø, Leander K, Swahn C-G (1973) Preparation of carboxylic acids from aldehydes (including hydroxylated benzaldehydes) by oxidation with chlorite. Acta Chem Scand 27(3):888

    Article  CAS  Google Scholar 

  • Marlet C, Lognay G (2010) Development and validation by accuracy profile of a method for the analysis of monoterpenes in indoor air by active sampling and thermal desorption-gas chromatography–mass spectrometry. Talanta 82(4):1230–1239. doi:10.1016/j.talanta.2010.06.044

    Article  CAS  PubMed  Google Scholar 

  • Meesters RJW, Duisken M, Jaehnigen H, Hollender J (2008) Sensitive determination of monoterpene alcohols in urine by HPLC-FLD combined with ESI-MS detection after online-solid phase extraction of the monoterpene-coumarincarbamate derivates. J Chromatogr, B: Anal Technol Biomed Life Sci 875(2):444–450

    Article  CAS  Google Scholar 

  • Miyazawa M, Kano H (2010) Regio- and stereoselective oxidation of (+)-Δ3-carene by the larvae of common cutworm (Spodoptera litura). J Agric Food Chem 58(6):3855–3858. doi:10.1021/jf903301v

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa M, Shindo M, Shimada T (2002) Metabolism of (+)- and (-)-limonenes to respective carveols and perillyl alcohols by CYP2C9 and CYP2C19 in human liver microsomes. Drug Metabol Dispos 30(5):602–607. doi:10.1124/dmd.30.5.602

    Article  CAS  Google Scholar 

  • Paquette LA, Ross RJ, Shi YJ (1990) Regioselective routes to nucleophilic optically active 2- and 3-carene systems. J Organic Chem 55(5):1589–1598. doi:10.1021/jo00292a039

    Article  CAS  Google Scholar 

  • Schmidt L, Belov VN, Göen T (2013) Sensitive monitoring of monoterpene metabolites in human urine using two-step derivatisation and positive chemical ionisation-tandem mass spectrometry. Anal Chim Acta 793:26–36. doi:10.1016/j.aca.2013.07.046

    Article  CAS  PubMed  Google Scholar 

  • Ścianowski J, Rafiński Z, Wojtczak A, Burczyński K (2009) Syntheses and reactions of terpene β-hydroxyselenides and β-hydroxydiselenides. Tetrahedron Asymmetry 20(24):2871–2879. doi:10.1016/j.tetasy.2009.12.001

    Article  Google Scholar 

  • Szakonyi Z, Csillag K, Fülöp F (2011) Stereoselective synthesis of carane-based aminodiols as chiral ligands for the catalytic addition of diethylzinc to aldehydes. Tetrahedron Asymmetry 22(9):1021–1027. doi:10.1016/j.tetasy.2011.06.013

    Article  CAS  Google Scholar 

  • Tan CC, Finney KN, Chen Q, Russell NV, Sharifi VN, Swithenbank J (2013) Experimental investigation of indoor air pollutants in residential buildings. Indoor Built Environ 22(3):471–489

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the volunteers for taking part in the oral exposure study and to Mr. Jürgen Bienert (MPI bpc) for recording NMR and mass spectra. This study was supported by a grant from the Adolf Rohrschneider-Stiftung (Erlangen, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Göen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, L., Belov, V.N. & Göen, T. Human metabolism of Δ3-carene and renal elimination of Δ3-caren-10-carboxylic acid (chaminic acid) after oral administration. Arch Toxicol 89, 381–392 (2015). https://doi.org/10.1007/s00204-014-1251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1251-5

Keywords

Navigation