Skip to main content

Advertisement

Log in

An update of human mesenchymal stem cell biology and their clinical uses

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential translation in therapy, and the challenges facing their adaptation in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah Basem M, Harkness L, Mahmood A, Kassem M (2011) Direct differentiation of human embryonic stem cells toward osteoblasts and chondrocytes through an intermediate mesenchyme progenitor lineage. In: Atwood C (ed) Embryonic stem cells: the hormonal regulation of pluripotency and embryogenesis, InTech Europe, Rijeka, Croatia, p 607–618. http://www.intechopen.com

  • Akiyama H, Lefebvre V (2011) Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab 29(4):390–395. doi:10.1007/s00774-011-0273-9

    PubMed  PubMed Central  Google Scholar 

  • Al-Nbaheen M, Vishnubalaji R, Ali D et al (2013) Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev 9(1):32–43. doi:10.1007/s12015-012-9365-8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barberi T, Willis LM, Socci ND, Studer L (2005) Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med 2(6):e161

    PubMed  PubMed Central  Google Scholar 

  • Barbuto R, Mitchell J (2013) Regulation of the osterix (Osx, Sp7) promoter by osterix and its inhibition by parathyroid hormone. J Mol Endocrinol 51(1):99–108. doi:10.1530/JME-12-0251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bentivegna AMM, Riva G, Foudah D, Butta V, Dalprà L, Tredici G (2013) DNA methylation changes during in vitro propagation of human mesenchymal stem cells: implications for their genomic stability? Stem Cells Int 2013:192425. doi:10.1155/2013/192425

    PubMed  PubMed Central  Google Scholar 

  • Bentzon JF, Stenderup K, Hansen FD et al (2005) Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. Biochem Biophys Res Commun 330(3):633–640. doi:10.1016/j.bbrc.2005.03.072

    CAS  PubMed  Google Scholar 

  • Bhansali A, Upreti V, Khandelwal N et al (2009) Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev 18(10):1407–1416. doi:10.1089/scd.2009.0164

    CAS  PubMed  Google Scholar 

  • Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    CAS  PubMed  Google Scholar 

  • Bianco P, Kuznetsov SA, Riminucci M, Gehron RP (2006) Postnatal skeletal stem cells. Methods Enzymol 419:117–148

    CAS  PubMed  Google Scholar 

  • Bianco P, Cao X, Frenette PS et al (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19(1):35–42. doi:10.1038/nm.3028

    CAS  PubMed  Google Scholar 

  • Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167(4):723–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borengasser SJ, Zhong Y, Kang P et al (2013) Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 154(11):4113–4125. doi:10.1210/en.2012-2255

    CAS  PubMed  Google Scholar 

  • Boyd NL, Robbins KR, Dhara SK, West FD, Stice SL (2009) Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells. Tissue Eng Part A 15(8):1897–1907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SE, Tong W, Krebsbach PH (2009) The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs 189(1–4):256–260

    PubMed  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res Off Publ Orthop Res Soc 9(5):641–650. doi:10.1002/jor.1100090504

    CAS  Google Scholar 

  • Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94(1):92–95

    PubMed  Google Scholar 

  • Chen S, Tao J, Bae Y et al (2013) Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9. J Bone Miner Res Off J Am Soc Bone Miner Res 28(3):649–659. doi:10.1002/jbmr.1770

    Google Scholar 

  • Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011a) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 118(2):330–338. doi:10.1182/blood-2010-12-327353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YH, Gu YM, Oh JW, Lee KY (2011b) Osterix is regulated by Erk1/2 during osteoblast differentiation. Biochem Biophy Res Commun 415(3):472–478. doi:10.1016/j.bbrc.2011.10.097

    CAS  Google Scholar 

  • Choi YH, Jeong HM, Jin YH, Li H, Yeo CY, Lee KY (2011c) Akt phosphorylates and regulates the osteogenic activity of Osterix. Biochem Biophys Res Commun 411(3):637–641. doi:10.1016/j.bbrc.2011.07.009

    CAS  PubMed  Google Scholar 

  • Choi YH, Choi JH, Oh JW, Lee KY (2013) Calmodulin-dependent kinase II regulates osteoblast differentiation through regulation of Osterix. Biochem Biophys Res Commun 432(2):248–255. doi:10.1016/j.bbrc.2013.02.005

    CAS  PubMed  Google Scholar 

  • Cook D, Genever P (2013) Regulation of mesenchymal stem cell differentiation. Adv Exp Med Biol 786:213–229. doi:10.1007/978-94-007-6621-1_12

    CAS  PubMed  Google Scholar 

  • Cunningham JJ, Ulbright TM, Pera MF, Looijenga LHJ (2012) Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotech 30(9):849–857

    CAS  Google Scholar 

  • Dai L, Zhang X, Hu X, Zhou C, Ao Y (2012) Silencing of microRNA-101 prevents IL-1beta-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther 14(6):R268. doi:10.1186/ar4114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Database UNIoHNctrar In. (2014) http://clinicaltrials.gov/ Accessed 6 February 2014

  • De Miguel MP, F-JS Blázquez-Martínez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12(5):17. doi:10.2174/156652412800619950

    Google Scholar 

  • de Peppo GM, Sjovall P, Lennerås M, et al (2010) osteogenic potential of human mesenchymal stem cells and human embryonic stem cell-derived mesodermal progenitors: a tissue engineering perspective. Tissue Eng Part A 16(11). doi: 10.1089/ten.tea.2010.0052

  • Devine SM, Bartholomew AM, Mahmud N et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29(2):244–255

    CAS  PubMed  Google Scholar 

  • Diederichsen AC, Moller JE, Thayssen P et al (2010) Changes in left ventricular filling patterns after repeated injection of autologous bone marrow cells in heart failure patients. Scand Cardiovasc J 44(3):139–145. doi:10.3109/14017430903556294

    CAS  PubMed  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754

    CAS  PubMed  Google Scholar 

  • Duijvestein M, Vos AC, Roelofs H et al (2010) Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59(12):1662–1669. doi:10.1136/gut.2010.215152

    PubMed  Google Scholar 

  • Eskildsen T, Taipaleenmaki H, Stenvang J et al (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 108(15):6139–6144. doi:10.1073/pnas.1016758108

    PubMed  PubMed Central  Google Scholar 

  • Estrada EJ, Valacchi F, Nicora E et al (2008) Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transpl 17(12):1295–1304

    Google Scholar 

  • Evseenko D, Zhu Y, Schenke-Layland K et al (2010) Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc Natl Acad Sci 107(31):13742–13747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fajas L, Schoonjans K, Gelman L et al (1999) Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol 19(8):5495–5503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang B, Song Y, Lin Q et al (2007) Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children. Pediatr Transpl 11(7):814–817

    CAS  Google Scholar 

  • Fengming Yue SS, Ichikawa H, Yoshie S, Akimi Mogi SM, Nagai M, Yokohama T, Sasaki TDaK (2013) Induce differentiation of embryonic stem cells by co-culture system. In: Andrades PJA (ed) Regenerative medicine and tissue engineering. InTech Europe, Rijeka, Croatia, p 117–139. http://www.intechopen.com

  • Fischer-Rasokat U, Assmus B, Seeger FH et al (2009) A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circ Heart Fail 2(5):417–423. doi:10.1161/CIRCHEARTFAILURE.109.855023

    CAS  PubMed  Google Scholar 

  • Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E (2003) Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 44(Suppl 1):109–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschi RT, Ge C, Xiao G, Roca H, Jiang D (2007) Transcriptional regulation of osteoblasts. Ann N Y Acad Sci 1116:196–207. doi:10.1196/annals.1402.081

    CAS  PubMed  Google Scholar 

  • Freytag SO, Paielli DL, Gilbert JD (1994) Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev 8(14):1654–1663

    CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20(3):263–272

    CAS  PubMed  Google Scholar 

  • Fujita T, Azuma Y, Fukuyama R et al (2004) Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3 K-Akt signaling. J Cell Biol 166(1):85–95. doi:10.1083/jcb.200401138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuster V, Kelly BB, Vedanthan R (2011) Global cardiovascular health: urgent need for an intersectoral approach. J Am Coll Cardiol 58(12):1208–1210

    PubMed  Google Scholar 

  • Gamez B, Rodriguez-Carballo E, Bartrons R, Rosa JL, Ventura F (2013) MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem 288(20):14264–14275. doi:10.1074/jbc.M112.432104

    CAS  PubMed  Google Scholar 

  • Gangji V, Hauzeur JP (2005) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. J Bone Joint Surg Am 87(Suppl 1 Pt 1):106–112. doi:10.2106/JBJS.D.02662

    PubMed  Google Scholar 

  • Gimble JM, Robinson CE, Wu X et al (1996) Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50(5):1087–1094

    CAS  PubMed  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219. doi:10.1161/CIRCRESAHA.108.176826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goettsch C, Rauner M, Pacyna N, Hempel U, Bornstein SR, Hofbauer LC (2011) miR-125b regulates calcification of vascular smooth muscle cells. Am J Pathol 179(4):1594–1600. doi:10.1016/j.ajpath.2011.06.016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu S, Boyer TG, Naski MC (2012) Basic helix-loop-helix transcription factor Twist1 inhibits transactivator function of master chondrogenic regulator Sox9. J Biol Chem 287(25):21082–21092. doi:10.1074/jbc.M111.328567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenkord J, Parwani A, Lyons-Weiler M et al (2008) Virtual karyotyping with SNP microarrays reduces uncertainty in the diagnosis of renal epithelial tumors. Diagn Pathol 3(1):44

    PubMed  PubMed Central  Google Scholar 

  • Haider HK, Jiang S, Idris NM, Ashraf M (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103(11):1300–1308

    CAS  PubMed  Google Scholar 

  • Hare JM, Traverse JH, Henry TD et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harkness L, Mahmood A, Ditzel N, Abdallah BM, Nygaard JV, Kassem M (2010) Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential. Bone 48(2):231–241. doi:10.1016/j.bone.2010.09.023

    PubMed  Google Scholar 

  • Harkness L, Mahmood A, Ditzel N, Abdallah BM, Nygaard JV, Kassem M (2011) Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential. Bone 48(2):231–241

    CAS  PubMed  Google Scholar 

  • Harkness LNS, Beermann J, Bozhevolnyi SI, Kassem M (2012) Identification of abnormal stem cells using Raman spectroscopy. Stem Cells Dev 21(12):8. doi:10.1089/scd.2011.0600

    Google Scholar 

  • Hata K, Takashima R, Amano K et al (2013) Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes. Nat Commun 4:2850. doi:10.1038/ncomms3850

    PubMed  Google Scholar 

  • Hatzistergos KE, Quevedo H, Oskouei BN et al (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107(7):913–922. doi:10.1161/CIRCRESAHA.110.222703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heile AM, Wallrapp C, Klinge PM et al (2009) Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci Lett 463(3):176–181

    CAS  PubMed  Google Scholar 

  • Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2(3):198–210. doi:10.1016/j.scr.2009.02.002

    PubMed  Google Scholar 

  • Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437

    PubMed  Google Scholar 

  • Hinoi E, Bialek P, Chen YT et al (2006) Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev 20(21):2937–2942. doi:10.1101/gad.1482906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houlihan DD, Mabuchi Y, Morikawa S et al (2012) Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-α. Nat Protoc 7(12):2103–2111

    CAS  PubMed  Google Scholar 

  • Huang W, Yang S, Shao J, Li YP (2007) Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12:3068–3092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhang Z, Guo J et al (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106(11):1753–1762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inanc B, Elcin AE, Elcin YM (2007) Effect of osteogenic induction on the in vitro differentiation of human embryonic stem cells cocultured with periodontal ligament fibroblasts. Artif Organs 31(11):792–800

    CAS  PubMed  Google Scholar 

  • Jang H, Kim EJ, Park JK et al (2014) SMILE inhibits BMP-2-induced expression of osteocalcin by suppressing the activity of the RUNX2 transcription factor in MC3T3E1 cells. Bone. doi:10.1016/j.bone.2013.12.028

    PubMed  Google Scholar 

  • Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B (2012) Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 126(5):551–568. doi:10.1161/CIRCULATIONAHA.111.086074

    PubMed  Google Scholar 

  • Ji JF, He BP, Dheen ST, Tay SS (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22(3):415–427

    CAS  PubMed  Google Scholar 

  • Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z (2013) miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 587(18):3027–3031. doi:10.1016/j.febslet.2013.07.030

    CAS  PubMed  Google Scholar 

  • Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–216

    CAS  PubMed  Google Scholar 

  • Karp JM, Ferreira LS, Khademhosseini A, Kwon AH, Yeh J, Langer RS (2006) Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells 24(4):835–843

    PubMed  Google Scholar 

  • Kassem M, Marie PJ (2011) Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 10(2):191–197

    CAS  PubMed  Google Scholar 

  • Kassem M, Mosekilde L, Eriksen EF (1993) 1,25-dihydroxyvitamin D3 potentiates fluoride-stimulated collagen type I production in cultures of human bone marrow stromal osteoblast-like cells. J Bone Miner Res 8(12):1453–1458

    CAS  PubMed  Google Scholar 

  • Kawai M, Green CB, Lecka-Czernik B et al (2010) A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-gamma nuclear translocation. Proc Natl Acad Sci USA 107(23):10508–10513. doi:10.1073/pnas.1000788107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawate K, Yajima H, Ohgushi H et al (2006) Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs 30(12):960–962

    CAS  PubMed  Google Scholar 

  • Kebriaei P, Isola L, Bahceci E et al (2009) Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transpl 15(7):804–811

    CAS  Google Scholar 

  • Kermani AJ, Fathi F, Mowla SJ (2008) Characterization and genetic manipulation of human umbilical cord vein mesenchymal stem cells: potential application in cell-based gene therapy. Rejuvenation Res 11(2):379–386. doi:10.1089/rej.2008.0674

    CAS  PubMed  Google Scholar 

  • Kim HE, Bae E, Jeong DY et al (2013) Lipin1 regulates PPARgamma transcriptional activity. Biochem J 453(1):49–60. doi:10.1042/BJ20121598

    CAS  PubMed  Google Scholar 

  • Kitoh H, Kitakoji T, Tsuchiya H et al (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis–a preliminary result of three cases. Bone 35(4):892–898. doi:10.1016/j.bone.2004.06.013

    PubMed  Google Scholar 

  • Klinge PM, Harmening K, Miller MC et al (2011) Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer’s disease. Neurosci Lett 497(1):6–10

    CAS  PubMed  Google Scholar 

  • Koga T, Matsui Y, Asagiri M et al (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11(8):880–885. doi:10.1038/nm1270

    CAS  PubMed  Google Scholar 

  • Koromila T, Baniwal SK, Song YS, Martin A, Xiong J, Frenkel B (2014) Glucocorticoids antagonize RUNX2 during osteoblast differentiation in cultures of ST2 pluripotent mesenchymal cells. J Cell Biochem 115(1):27–33. doi:10.1002/jcb.24646

    CAS  PubMed  Google Scholar 

  • Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S (2010) Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 18(5):1026–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsov SA, Krebsbach PH, Satomura K et al (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res Off J Am Soc Bone Miner Res 12(9):1335–1347

    CAS  Google Scholar 

  • Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H et al (2011) Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One 6(1):e14486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen KH, Frederiksen CM, Burns JS, Abdallah BM, Kassem M (2010) Identifying a molecular phenotype for bone marrow stromal cells with in vivo bone-forming capacity. J Bone Miner Res 25(4):796–808. doi:10.1359/jbmr.091018

    CAS  PubMed  Google Scholar 

  • Lawson KA, Teteak CJ, Gao J et al (2013) ESET histone methyltransferase regulates osteoblastic differentiation of mesenchymal stem cells during postnatal bone development. FEBS Lett 587(24):3961–3967. doi:10.1016/j.febslet.2013.10.028

    CAS  PubMed  Google Scholar 

  • Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148(6):2669–2680. doi:10.1210/en.2006-1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262(5):509–525

    PubMed  Google Scholar 

  • Le Blanc K, Gotherstrom C, Ringden O et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79(11):1607–1614

    PubMed  Google Scholar 

  • Le BK, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586

    Google Scholar 

  • Lee YH, Kim SH, Lee YJ et al (2013) Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor gamma. Cell Mol Life Sci 70(20):3959–3971. doi:10.1007/s00018-013-1363-8

    CAS  PubMed  Google Scholar 

  • Lefebvre V, Li P, de Crombrugghe B (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17(19):5718–5733. doi:10.1093/emboj/17.19.5718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lepperdinger G, Brunauer R, Jamnig A, Laschober G, Kassem M (2008) Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies? Exp Gerontol 43(11):1018–1023

    CAS  PubMed  Google Scholar 

  • Leung VY, Gao B, Leung KK et al (2011) SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet 7(11):e1002356. doi:10.1371/journal.pgen.1002356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levy O, Zhao W, Mortensen LJ et al (2013) mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood. doi:10.1182/blood-2013-04-495119

    Google Scholar 

  • Li W, Ma N, Ong LL et al (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25(8):2118–2127

    CAS  PubMed  Google Scholar 

  • Li H, Jeong HM, Choi YH et al (2013a) Glycogen synthase kinase 3 alpha phosphorylates and regulates the osteogenic activity of Osterix. Biochem Biophys Res Commun 434(3):653–658. doi:10.1016/j.bbrc.2013.03.137

    CAS  PubMed  Google Scholar 

  • Li J, Zhang N, Huang X et al (2013b) Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis 4:e832. doi:10.1038/cddis.2013.348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li E, Zhang J, Yuan T, Ma B (2014) miR-143 suppresses osteogenic differentiation by targeting Osterix. Mol Cell Biochem. doi:10.1007/s11010-013-1957-3

    Google Scholar 

  • Lian Q, Lye E, Suan Yeo K et al (2007) Derivation of clinically compliant MSCs from CD105 + , CD24 − differentiated human ESCs. Stem Cells 25(2):425–436

    CAS  PubMed  Google Scholar 

  • Lian Q, Zhang Y, Zhang J et al (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9):1113–1123. doi:10.1161/CIRCULATIONAHA.109.898312

    PubMed  Google Scholar 

  • Liang J, Zhang H, Wang D et al (2012) Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut 61(3):468–469. doi:10.1136/gutjnl-2011-300083

    PubMed  Google Scholar 

  • Liao L, Yang X, Su X et al (2013) Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis 4:e600. doi:10.1038/cddis.2013.130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin FT, Lane MD (1992) Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. Genes Dev 6(4):533–544

    CAS  PubMed  Google Scholar 

  • Liu Y, Goldberg AJ, Dennis JE, Gronowicz GA, Kuhn LT (2012) One-Step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One 7(3):e33225. doi:10.1371/journal.pone.0033225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mabuchi Y, Houlihan DD, Akazawa C, Okano H, Matsuzaki Y (2013) Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int 2013:507301. doi:10.1155/2013/507301

    PubMed  PubMed Central  Google Scholar 

  • Mahmood A, Harkness L, Schroder HD, Abdallah BM, Kassem M (2010) Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542. J Bone Miner Res 25(6):1216–1233. doi:10.1002/jbmr.34

    CAS  PubMed  Google Scholar 

  • Mahmood A, Harkness L, Abdallah BM et al (2012) Derivation of stromal (skeletal and mesenchymal) stem-like cells from human embryonic stem cells. Stem Cells Dev 21(17):3114–3124. doi:10.1089/scd.2012.0035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9(9):1195–1201

    CAS  PubMed  Google Scholar 

  • Marie PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473(2):98–105. doi:10.1016/j.abb.2008.02.030

    CAS  PubMed  Google Scholar 

  • Martinez-Sanchez A, Dudek KA, Murphy CL (2012) Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem 287(2):916–924. doi:10.1074/jbc.M111.302430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto Y, Ivasaki H, Suda T (2011) Maintenance of adult stem cells: role of the stem cell niche. In: Phinney DG (ed) Adult stem cells: biology and methods of analysis. Stem cell biology and regenerative medicine. Springer, Berlin, pp 35–55

    Google Scholar 

  • Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289. doi:10.1016/j.yjmcc.2010.08.005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Okada Y, Aoi T, et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotech 27(8):743–745 http://www.nature.com/nbt/journal/v27/n8/suppinfo/nbt.1554_S1.html

    Google Scholar 

  • Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L (1998) The chemokine receptor CXCR-4 is expressed on CD34 + hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91(12):4523–4530

    CAS  PubMed  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29

    CAS  PubMed  Google Scholar 

  • Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506. doi:10.1182/blood-2007-02-069716

    CAS  PubMed  Google Scholar 

  • Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38(6):1110–1116. doi:10.1177/0363546509359067

    PubMed  Google Scholar 

  • Nishio Y, Dong Y, Paris M, O’Keefe RJ, Schwarz EM, Drissi H (2006) Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372:62–70. doi:10.1016/j.gene.2005.12.022

    CAS  PubMed  Google Scholar 

  • Noiseux N, Gnecchi M, Lopez-Ilasaca M et al (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther J Am Soc Gene Ther 14(6):840–850. doi:10.1016/j.ymthe.2006.05.016

    CAS  Google Scholar 

  • Nouspikel T (2013) Genetic instability in human embryonic stem cells: prospects and caveats. Future Oncol 9(6):867–877. doi:10.2217/fon.13.22

    CAS  PubMed  Google Scholar 

  • Nuttall ME, Shah F, Singh V, Thomas-Porch C, Frazier T, Gimble JM (2014) Adipocytes and the regulation of bone remodeling: a balancing act. Calcif Tissue Int 94(1):78–87. doi:10.1007/s00223-013-9807-6

    CAS  PubMed  Google Scholar 

  • Oh CD, Maity SN, Lu JF et al (2010) Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS One 5(4):e10113. doi:10.1371/journal.pone.0010113

    PubMed  PubMed Central  Google Scholar 

  • Olivier E, Bouhassira E (2011) Differentiation of human embryonic stem cells into mesenchymal stem cells by the raclure method. In: Nieden NI (ed) Embryonic stem cell therapy for Osteo-degenerative diseases. Methods in molecular biology, vol 690. Humana, Clifton, pp 183–193

    Google Scholar 

  • Orbay H, Tobita M, Mizuno H (2012) Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem cells Int 461718. doi: 10.1155/2012/461718

  • Orozco L, Munar A, Soler R et al (2013) Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 95(12):1535–1541. doi:10.1097/TP.0b013e318291a2da

    CAS  PubMed  Google Scholar 

  • Ortuno MJ, Ruiz-Gaspa S, Rodriguez-Carballo E et al (2010) p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem 285(42):31985–31994. doi:10.1074/jbc.M110.123612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pal P, Lochab S, Kanaujiya JK et al (2013) E3 ubiquitin ligase E6AP negatively regulates adipogenesis by downregulating proadipogenic factor C/EBPalpha. PLoS One 8(6):e65330. doi:10.1371/journal.pone.0065330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan S, Yang X, Jia Y, Li R, Zhao R (2013) Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-gamma expression. J Cell Physiol. doi:10.1002/jcp.24486

    PubMed Central  Google Scholar 

  • Park BO, Ahrends R, Teruel MN (2012) Consecutive positive feedback loops create a bistable switch that controls preadipocyte-to-adipocyte conversion. Cell Rep 2(4):976–990. doi:10.1016/j.celrep.2012.08.038

    CAS  PubMed  Google Scholar 

  • Paul G, Ozen I, Christophersen NS et al (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 7(4):e35577. doi:10.1371/journal.pone.0035577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Shi K, Wang L et al (2013) Characterization of Osterix protein stability and physiological role in osteoblast differentiation. PLoS One 8(2):e56451. doi:10.1371/journal.pone.0056451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Ilzarbe M, Agbulut O, Pelacho B et al (2008) Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. Eur J Heart Fail 10(11):1065–1072. doi:10.1016/j.ejheart.2008.08.002

    CAS  PubMed  Google Scholar 

  • Porada CD, Almeida-Porada G (2010) Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 62(12):1156–1166. doi:10.1016/j.addr.2010.08.010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap J, Galindo M, Zaidi SK et al (2003) Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res 63(17):5357–5362

    CAS  PubMed  Google Scholar 

  • Quesenberry PJ, Becker PS (1998) Stem cell homing: rolling, crawling, and nesting. Proc Natl Acad Sci USA 95(26):15155–15157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ringden O, Uzunel M, Rasmusson I et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397

    PubMed  Google Scholar 

  • Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336. doi:10.1016/j.cell.2007.08.025

    CAS  PubMed  Google Scholar 

  • Samuelsson L, Stromberg K, Vikman K, Bjursell G, Enerback S (1991) The CCAAT/enhancer binding protein and its role in adipocyte differentiation: evidence for direct involvement in terminal adipocyte development. EMBO J 10(12):3787–3793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar D, Vemula PK, Zhao W, Gupta A, Karnik R, Karp JM (2010) Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting. Biomaterials 31(19):5266–5274. doi:10.1016/j.biomaterials.2010.03.006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM et al (2010) MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev 19(6):877–885. doi:10.1089/scd.2009.0112

    CAS  PubMed  Google Scholar 

  • Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP (2007) Stem cell transplantation: the lung barrier. Transpl Proc 39(2):573–576. doi:10.1016/j.transproceed.2006.12.019

    CAS  Google Scholar 

  • Schriebl K, Satianegara G, Hwang A et al (2012) Selective removal of undifferentiated human embryonic stem cells using magnetic activated cell sorting followed by a cytotoxic antibody. Tissue Eng Part A 18(9–10):899–909

    CAS  PubMed  Google Scholar 

  • Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97(21):11307–11312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi M, Li J, Liao L et al (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92(7):897–904

    PubMed  Google Scholar 

  • Shi K, Lu J, Zhao Y et al (2013) MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone 55(2):487–494. doi:10.1016/j.bone.2013.04.002

    CAS  PubMed  Google Scholar 

  • Shiojima I, Walsh K (2006) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20(24):3347–3365. doi:10.1101/gad.1492806

    CAS  PubMed  Google Scholar 

  • Shujia J, Haider HK, Idris NM, Lu G, Ashraf M (2008) Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res 77(3):525–533

    CAS  PubMed  Google Scholar 

  • Simonsen JL, Rosada C, Serakinci N et al (2002) Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20(6):592–596

    CAS  PubMed  Google Scholar 

  • Sinha KM, Zhou X (2013) Genetic and molecular control of osterix in skeletal formation. J Cell Biochem 114(5):975–984. doi:10.1002/jcb.24439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha KM, Yasuda H, Zhou X, Decrombrugghe B (2013) Osterix and NO66 histone demethylase control the chromatin architecture of Osterix target genes during osteoblast differentiation. J Bone Miner Res Off J Am Soc Bone Miner Res. doi:10.1002/jbmr.2103

    Google Scholar 

  • Sordi V, Malosio ML, Marchesi F et al (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106(2):419–427

    CAS  PubMed  Google Scholar 

  • Sottile V, Thomson A, McWhir J (2003) In Vitro Osteogenic Differentiation of Human ES Cells. Cloning Stem Cells 5(2):149–155

    CAS  PubMed  Google Scholar 

  • Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926. doi:10.1016/j.bone.2003.07.005

    PubMed  Google Scholar 

  • Takada I, Kouzmenko AP, Kato S (2009a) Molecular switching of osteoblastogenesis versus adipogenesis: implications for targeted therapies. Expert Opin Ther Targets 13(5):593–603. doi:10.1517/14728220902915310

    CAS  PubMed  Google Scholar 

  • Takada I, Kouzmenko AP, Kato S (2009b) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5(8):442–447. doi:10.1038/nrrheum.2009.137

    CAS  PubMed  Google Scholar 

  • Tang QQ, Lane MD (2000) Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer-binding protein-beta during adipogenesis. Proc Natl Acad Sci USA 97(23):12446–12450. doi:10.1073/pnas.220425597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang C, Weissman IL, Drukker M (2012) The safety of embryonic stem cell therapy relies on teratoma removal. Oncotarget 3(1):7–8. PMID 22294556

    Google Scholar 

  • Tao Z, Chen B, Tan X et al (2011) Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci USA 108(5):2064–2069. doi:10.1073/pnas.1018925108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS (2000) Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290(5489):134–138

    CAS  PubMed  Google Scholar 

  • Tong Q, Tsai J, Tan G, Dalgin G, Hotamisligil GS (2005) Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol 25(2):706–715. doi:10.1128/MCB.25.2.706-715.2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8(10):1224–1234

    CAS  PubMed  Google Scholar 

  • Tormin A, Li O, Brune JC et al (2011) CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117(19):5067–5077. doi:10.1182/blood-2010-08-304287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tornvig L, Mosekilde LI, Justesen J, Falk E, Kassem M (2001) Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif Tissue Int 69(1):46–50. doi:10.1007/s002230020018

    CAS  PubMed  Google Scholar 

  • Tremoleda JL, Forsyth NR, Khan NS et al (2008) Bone Tissue Formation from Human Embryonic Stem Cells In Vivo. Cloning Stem Cells 10(1):119–132

    CAS  PubMed  Google Scholar 

  • Trivedi P, Hematti P (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 36(3):350–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Q, Valverde P, Li S, Zhang J, Yang P, Chen J (2007) Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng 13(10):2431–2440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ueta C, Iwamoto M, Kanatani N et al (2001) Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol 153(1):87–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vimalraj S, Partridge NC, Selvamurugan N (2014) A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol. doi:10.1002/jcp.24557

    PubMed  Google Scholar 

  • Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1(1):74–79. doi:10.1002/term.8

    PubMed  Google Scholar 

  • Wang YH, Han Z-B; Song Y-P; Han ZC (2012) Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012(Article ID 652034):4. doi: 10.1155/2012/652034

  • Wang CY, Yang SF, Wang Z et al (2013) PCAF acetylates Runx2 and promotes osteoblast differentiation. J Bone Miner Metab 31(4):381–389. doi:10.1007/s00774-013-0428-y

    CAS  PubMed  Google Scholar 

  • Weng JY, Du X, Geng SX et al (2010) Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transpl 45(12):1732–1740. doi:10.1038/bmt.2010.195

    CAS  Google Scholar 

  • Wu Y, Zhao RC (2012) The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev 8(1):243–250

    CAS  PubMed  Google Scholar 

  • Xiao G, Jiang D, Thomas P et al (2000) MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 275(6):4453–4459

    CAS  PubMed  Google Scholar 

  • Yamashita S, Miyaki S, Kato Y et al (2012) L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA expression by strengthening dimeric Sox9 activity. J Biol Chem 287(26):22206–22215. doi:10.1074/jbc.M112.343194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Cheng P, Chen C et al (2012a) miR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res Off J Am Soc Bone Miner Res 27(7):1598–1606. doi:10.1002/jbmr.1621

    CAS  Google Scholar 

  • Yang X, Balakrishnan I, Torok-Storb B, Pillai MM (2012b) Marrow stromal cell infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. Adv Hematol 2012:142530

    PubMed  PubMed Central  Google Scholar 

  • Yang D, Okamura H, Nakashima Y, Haneji T (2013) Histone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and osterix. J Biol Chem 288(47):33530–33541. doi:10.1074/jbc.M113.497040

    CAS  PubMed  Google Scholar 

  • Zhang JF, Fu WM, He ML et al (2011a) MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 22(21):3955–3961. doi:10.1091/mbc.E11-04-0356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JF, Fu WM, He ML et al (2011b) MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol 8(5):829–838. doi:10.4161/rna.8.5.16043

    CAS  PubMed  Google Scholar 

  • Zhao S, Wehner R, Bornhauser M, Wassmuth R, Bachmann M, Schmitz M (2010) Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 19(5):607–614. doi:10.1089/scd.2009.0345

    CAS  PubMed  Google Scholar 

  • Zhou M, Ma J, Chen S, Chen X, Yu X (2013) MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine. doi:10.1007/s12020-013-9986-y

    Google Scholar 

  • Zimmet H, Porapakkham P, Sata Y et al (2012) Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail 14(1):91–105. doi:10.1093/eurjhf/hfr148

    PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from the University hospital of Odense, Odense, Denmark and KACST, (Project Code: 10-BIO1308-02) (KSA). The funders had no role in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moustapha Kassem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaher, W., Harkness, L., Jafari, A. et al. An update of human mesenchymal stem cell biology and their clinical uses. Arch Toxicol 88, 1069–1082 (2014). https://doi.org/10.1007/s00204-014-1232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1232-8

Keywords

Navigation